【題目】如圖1,直線l1:y=﹣x+3與坐標軸分別交于點A,B,與直線l2:y=x交于點C.

(1)求A,B兩點的坐標;

(2)求BOC的面積;

(3)如圖2,若有一條垂直于x軸的直線l以每秒1個單位的速度從點A出發(fā)沿射線AO方向作勻速滑動,分別交直線l1,l2及x軸于點M,N和Q.設(shè)運動時間為t(s),連接CQ.

當OA=3MN時,求t的值;

試探究在坐標平面內(nèi)是否存在點P,使得以O(shè)、Q、C、P為頂點的四邊形構(gòu)成菱形?若存在,請直接寫出t的值;若不存在,請說明理由.

【答案】(1)A(6,0)B(0,3);(2)SOBC=3;(3)①t=;②t=(6+2)s或(6﹣2)s或2s或4s時,以O(shè)、Q、C、P為頂點的四邊形構(gòu)成菱形.

【解析】

(1)利用待定系數(shù)法即可解決問題;

(2)構(gòu)建方程組確定點C坐標即可解決問題;

(3)根據(jù)絕對值方程即可解決問題;

(4)分兩種情形討論:當OC為菱形的邊時,可得Q1 Q2Q4(4,0);當OC為菱形的對角線時,Q3(2,0);

(1)對于直線,令x=0得到y=3,令y=0,得到x=6,

A(6,0)B(0,3).

(2)由解得 ,

C(2,2),

(3)①∵

OA=3MN,

解得t=

②如圖3中,由題意

OC為菱形的邊時,可得Q1(﹣2,0),Q2(2,0),Q4(4,0);

OC為菱形的對角線時,Q3(2,0),

t=(6+2)s或(6﹣2)s2s4s時,以O、Q、C、P為頂點的四邊形構(gòu)成菱形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】12分)某中學(xué)組織學(xué)生去福利院慰問,在準備禮品時發(fā)現(xiàn),購買1個甲禮品比購買1個乙禮品多花40元,并且花費600元購買甲禮品和花費360元購買乙禮品的數(shù)量相等.

(1)求甲、乙兩種禮品的單價各為多少元?

(2)學(xué)校準備購買甲、乙兩種禮品共30個送給福利院的老人,要求購買禮品的總費用不超過2000元,那么最多可購買多少個甲禮品?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】光明中學(xué)有兩塊邊長為x米的正方形空地,現(xiàn)設(shè)想按兩種方式種植草皮,方式一:如圖①,在正方形空地上留兩條寬為2m米的路,其余種植草皮;方式二:如圖②,在正方形空地四周各留一塊邊長為m米的正方形空地植樹,其余種植草皮.學(xué)校準備兩種方式都用5000元購進草皮.

(1)寫出按圖①,②兩種方式購買草皮的單價;

(2)x=14,m=2時,求按兩種方式購買草皮的單價各是多少(結(jié)果均保留整數(shù)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小聰和小明沿同一條筆直的馬路同時從學(xué)校出發(fā)到某圖書館查閱資料,學(xué)校與 圖書館的路程是 千米,小聰騎自行車,小明步行,當小聰從原路回到學(xué)校時,小明剛好到 達圖書館,圖中折線 和線段 分別表示兩人離學(xué)校的路程 (千米)與所經(jīng)過的 時間 (分鐘)之間的函數(shù)關(guān)系,請根據(jù)圖像回答下列問題:

(1)小聰在圖書館查閱資料的時間為 分鐘;小聰返回學(xué)校的速度為 千米/分鐘.

(2)請你求出小明離開學(xué)校的路程 (千米)與所經(jīng)過的時間 (分鐘)之間的函數(shù)表達式;

(3)若設(shè)兩人在路上相距不超過 千米時稱為可以“互相望見”,則小聰和小明可以“互相 望見”的時間共有多少分鐘?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,把矩形紙片ABCD沿EF折疊后,使得點D與點B重合,點C落在點C的位置上.

1BEF是等腰三角形嗎?試說明理由;

2)若AB4,AD8,求CF的長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】將正整數(shù)按如圖方式進行有規(guī)律的排列,第2行最后一個數(shù)是4,第3行最后一個數(shù)是7,第4行最后一個數(shù)是10,…,依此類推,第10行第2個數(shù)是__________,第__________行最后一個數(shù)是2 020.

1

2 3 4

3 4 5 6 7

4 5 6 7 8 9 10

5 6 7 8 9 10 11 12 13

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一條排水管的截面如圖所示.已知排水管的截面圓半徑OB=10,截面圓圓心O到水面的距離OC是6,則水面寬AB是(
A.16
B.10
C.8
D.6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為倡導(dǎo)“低碳生活”,常選擇以自行車作為代步工具,如圖1所示是一輛自行車的實物圖.車架檔AC與CD的長分別為45cm,60cm,且它們互相垂直,座桿CE的長為20cm,點A,C,E在同一條直線上,且∠CAB=75°,如圖2.
(1)求車架檔AD的長;
(2)求車座點E到車架檔AB的距離. (結(jié)果精確到 1cm.參考數(shù)據(jù):sin75°≈0.9659,cos75°≈0.2588,tan75≈3.7321

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某市舉行知識大賽,A校、B校各派出5名選手組成代表隊參加決賽,兩校派出選手的決賽成績?nèi)鐖D所示.

(1)根據(jù)圖示填寫下表:

平均數(shù)/

中位數(shù)/

眾數(shù)/

A

______

85

______

B

85

______

100

(2)結(jié)合兩校成績的平均數(shù)和中位數(shù),分析哪個學(xué)校的決賽成績較好;

(3)計算兩校決賽成績的方差,并判斷哪個學(xué)校代表隊選手成績較為穩(wěn)定.

查看答案和解析>>

同步練習(xí)冊答案