【題目】已知矩形紙片OBCD的邊OB在x軸上,OD在y軸上,點(diǎn)C在第一象限,且.現(xiàn)將紙片折疊,折痕為EF(點(diǎn)E,F是折痕與矩形的邊的交點(diǎn)),點(diǎn)P為點(diǎn)D的對應(yīng)點(diǎn),再將紙片還原。
(I)若點(diǎn)P落在矩形OBCD的邊OB上,
①如圖①,當(dāng)點(diǎn)E與點(diǎn)O重合時(shí),求點(diǎn)F的坐標(biāo);
②如圖②,當(dāng)點(diǎn)E在OB上,點(diǎn)F在DC上時(shí),EF與DP交于點(diǎn)G,若,求點(diǎn)F的坐標(biāo):
(Ⅱ)若點(diǎn)P落在矩形OBCD的內(nèi)部,且點(diǎn)E,F分別在邊OD,邊DC上,當(dāng)OP取最小值時(shí),求點(diǎn)P的坐標(biāo)(直接寫出結(jié)果即可)。
【答案】(I)①點(diǎn)F的坐標(biāo)為;②點(diǎn)F的坐標(biāo)為;(II)
【解析】
(I)①根據(jù)折疊的性質(zhì)可得,再由矩形的性質(zhì),即可求出F的坐標(biāo);
②由折疊的性質(zhì)及矩形的特點(diǎn),易得,得到,再加上平行,可以得到四邊形DEPF是平行四邊形,在由對角線垂直,得出 是菱形,設(shè)菱形的邊長為x,在中,由勾股定理建立方程即可求解;
(Ⅱ)當(dāng)O,P,F點(diǎn)共線時(shí)OP的長度最短.
解:(I)①∵折痕為EF,點(diǎn)P為點(diǎn)D的對應(yīng)點(diǎn)
∵四邊形OBCD是矩形,
點(diǎn)F的坐標(biāo)為
②∵折痕為EF,點(diǎn)P為點(diǎn)D的對應(yīng)點(diǎn).
∵四邊形OBCD是矩形,
,
;
∴四邊形DEPF是平行四邊形.
,
是菱形.
設(shè)菱形的邊長為x,則
,
,
在中,由勾股定理得
解得
∴點(diǎn)F的坐標(biāo)為
(Ⅱ)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠B=90 ,AB=16cm,BC=12cm,P、Q是△ABC邊上的兩個(gè)動(dòng)點(diǎn),其中點(diǎn)P從點(diǎn)A開始沿A→B方向運(yùn)動(dòng),且速度為每秒1cm,點(diǎn)Q從點(diǎn)B開始沿B→C→A方向運(yùn)動(dòng),且速度為每秒2cm,它們同時(shí)出發(fā),設(shè)出發(fā)的時(shí)間為t秒.
(1)出發(fā)2秒后,求PQ的長;
(2)當(dāng)點(diǎn)Q在邊BC上運(yùn)動(dòng)時(shí),出發(fā)幾秒鐘后,△PQB能形成等腰三角形?
(3)當(dāng)點(diǎn)Q在邊CA上運(yùn)動(dòng)時(shí),求能使△BCQ成為等腰三角形的運(yùn)動(dòng)時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半徑為2的⊙O的弦,將沿著弦AB折疊,正好經(jīng)過圓心O,點(diǎn)C是折疊后的上一動(dòng)點(diǎn),連接并延長BC交⊙O于點(diǎn)D,點(diǎn)E是CD的中點(diǎn),連接AC,AD,EO.則下列結(jié)論:①∠ACB=120°,②△ACD是等邊三角形,③EO的最小值為1,其中正確的是_____.(請將正確答案的序號(hào)填在橫線上)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AC、BD相交于點(diǎn)O,AE平分∠BAD,交BC于E,若∠EAO=15°,則∠BOE的度數(shù)為 度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AE⊥BC于點(diǎn)E,延長BC至點(diǎn)F使CF=BE,連結(jié)AF,DE,DF.
(1)求證:四邊形AEFD是矩形;
(2)若AB=6,DE=8,BF=10,求AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和小亮想趁暑假去看世博會(huì),可是只有一張門票,誰都想去,最后商定通過轉(zhuǎn)盤游戲來決定.他們準(zhǔn)備了如圖所示兩個(gè)可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤、,每個(gè)轉(zhuǎn)盤被分成面積相等的幾個(gè)扇形,并在每一個(gè)扇形內(nèi)標(biāo)上數(shù)字,游戲規(guī)則是:同時(shí)轉(zhuǎn)動(dòng)兩個(gè)轉(zhuǎn)盤,當(dāng)轉(zhuǎn)盤停止后,指針?biāo)竻^(qū)域的數(shù)字之和為時(shí),小明去:數(shù)字之和為時(shí),小亮去.(如果指針恰好指在分割線上,那么重轉(zhuǎn)一次,直到指針指向某一區(qū)域?yàn)橹梗?/span>
用樹狀圖或列表法求小明去的概率;
這個(gè)游戲規(guī)則對小明、小亮雙方公平嗎?請判斷并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是的內(nèi)接正十邊形的一邊,平分交于點(diǎn),則下列結(jié)論正確的有( )
①;②;③;④.
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在△ABC中,∠B=60°,點(diǎn)M從點(diǎn)B出發(fā)沿射線BC方向,在射線BC上運(yùn)動(dòng).在點(diǎn)M運(yùn)動(dòng)的過程中,連結(jié)AM,并以AM為邊在射線BC上方,作等邊△AMN,連結(jié)CN.
(1)當(dāng)∠BAM= °時(shí),AB=2BM;
(2)請?zhí)砑右粋(gè)條件: ,使得△ABC為等邊三角形;
①如圖1,當(dāng)△ABC為等邊三角形時(shí),求證:CN+CM=AC;
②如圖2,當(dāng)點(diǎn)M運(yùn)動(dòng)到線段BC之外(即點(diǎn)M在線段BC的延長線上時(shí)),其它條件不變(△ABC仍為等邊三角形),請寫出此時(shí)線段CN、CM、AC滿足的數(shù)量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】車間有20名工人,某一天他們生產(chǎn)的零件個(gè)數(shù)統(tǒng)計(jì)如下表:
生產(chǎn)零件的個(gè)數(shù)(個(gè)) | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
工人人數(shù)(人) | 1 | 1 | 6 | 4 | 2 | 2 | 2 | 1 | 1 |
(1)求這一天20名工人生產(chǎn)零件的平均個(gè)數(shù);
(2)為了提高大多數(shù)工人的積極性,管理者準(zhǔn)備實(shí)行“每天定額生產(chǎn),超產(chǎn)有獎(jiǎng)”的措施.如果你是管理者,從平均數(shù)、中位數(shù)、眾數(shù)的角度進(jìn)行分析,你將如何確定這個(gè)“定額”?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com