【題目】車間有20名工人,某一天他們生產(chǎn)的零件個(gè)數(shù)統(tǒng)計(jì)如下表:

生產(chǎn)零件的個(gè)數(shù)(個(gè))

9

10

11

12

13

14

15

16

17

工人人數(shù)()

1

1

6

4

2

2

2

1

1

1)求這一天20名工人生產(chǎn)零件的平均個(gè)數(shù);

2)為了提高大多數(shù)工人的積極性,管理者準(zhǔn)備實(shí)行“每天定額生產(chǎn),超產(chǎn)有獎(jiǎng)”的措施.如果你是管理者,從平均數(shù)、中位數(shù)、眾數(shù)的角度進(jìn)行分析,你將如何確定這個(gè)“定額”?

【答案】(1)這一天20名工人生產(chǎn)零件的平均個(gè)數(shù)為;(2)中位數(shù)為 ,眾數(shù)為11所以應(yīng)該將定額確定為11個(gè)時(shí),有利于提高大多數(shù)工人的積極性

【解析】

1)利用平均數(shù)的定義求解即可;

2)根據(jù)表中的數(shù)據(jù),求出中位數(shù),眾數(shù),結(jié)合平均數(shù)即可確定 “定額”.

(1)這一天20名工人生產(chǎn)零件的平均個(gè)數(shù)為

;

2)中位數(shù)為 ,眾數(shù)為11

當(dāng)定額為12.5時(shí),有8個(gè)人達(dá)標(biāo),8人獲獎(jiǎng),不利于提高大多數(shù)工人的積極性;

當(dāng)定額為12時(shí),有12個(gè)人達(dá)標(biāo),8人獲獎(jiǎng),不利于提高大多數(shù)工人的積極性;

當(dāng)定額為11時(shí),有18個(gè)人達(dá)標(biāo),12人獲獎(jiǎng),有利于提高大多數(shù)工人的積極性;

所以應(yīng)該將定額確定為11個(gè)時(shí),有利于提高大多數(shù)工人的積極性

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知矩形紙片OBCD的邊OBx軸上,ODy軸上,點(diǎn)C在第一象限,且.現(xiàn)將紙片折疊,折痕為EF(點(diǎn)EF是折痕與矩形的邊的交點(diǎn)),點(diǎn)P為點(diǎn)D的對(duì)應(yīng)點(diǎn),再將紙片還原。

I)若點(diǎn)P落在矩形OBCD的邊OB上,

①如圖①,當(dāng)點(diǎn)E與點(diǎn)O重合時(shí),求點(diǎn)F的坐標(biāo);

②如圖②,當(dāng)點(diǎn)EOB上,點(diǎn)FDC上時(shí),EFDP交于點(diǎn)G,若,求點(diǎn)F的坐標(biāo):

(Ⅱ)若點(diǎn)P落在矩形OBCD的內(nèi)部,且點(diǎn)E,F分別在邊OD,邊DC上,當(dāng)OP取最小值時(shí),求點(diǎn)P的坐標(biāo)(直接寫出結(jié)果即可)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖1,在中,,∠ABC=30°,,點(diǎn)、E分別是邊AC上動(dòng)點(diǎn),點(diǎn)不與點(diǎn)重合,DEBC

1)如圖1,當(dāng)AE=1時(shí),求長(zhǎng);

2)如圖2,把沿著直線翻折得到,設(shè)

①當(dāng)點(diǎn)F落在斜邊上時(shí),求的值;

如圖3,當(dāng)點(diǎn)F落在外部時(shí),EFDF分別與相交于點(diǎn)H、G,如果△ABC和△DEF重疊部分的面積為,求的函數(shù)關(guān)系式及定義域.(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司的午餐采用自助的形式,并倡導(dǎo)員工適度取餐,減少浪費(fèi)該公司共有10個(gè)部門,且各部門的人數(shù)相同.為了解午餐的浪費(fèi)情況,從這10個(gè)部門中隨機(jī)抽取了兩個(gè)部門,進(jìn)行了連續(xù)四周(20個(gè)工作日)的調(diào)查,得到這兩個(gè)部門每天午餐浪費(fèi)飯菜的重量,以下簡(jiǎn)稱每日餐余重量(單位:千克),并對(duì)這些數(shù)據(jù)進(jìn)行了整理、描述和分析.下面給出了部分信息..部門每日餐余重量的頻數(shù)分布直方圖如下(數(shù)據(jù)分成6組:,,):

.部門每日餐余重量在這一組的是:6.1 6.6 7.0 7.0 7.0 7.8

.部門每日餐余重量如下:1.4 2.8 6.9 7.8 1.9 9.7 3.1 4.6 6.9 10.8 6.9 2.6 7.5 6.9 9.5 7.8 8.4 8.3 9.4 8.8

. 兩個(gè)部門這20個(gè)工作日每日餐余重量的平均數(shù)、中位數(shù)、眾數(shù)如下:

部門

平均數(shù)

中位數(shù)

眾數(shù)

6.4

7.0

/p>

6.6

7.2

根據(jù)以上信息,回答下列問(wèn)題:

1)寫出表中的值;

2)在這兩個(gè)部門中,適度取餐,減少浪費(fèi)做得較好的部門是________(填),理由是____________

3)結(jié)合這兩個(gè)部門每日餐余重量的數(shù)據(jù),估計(jì)該公司(10個(gè)部門)一年(按240個(gè)工作日計(jì)算)的餐余總重量.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某水果批發(fā)市場(chǎng)香蕉的價(jià)格如下表

購(gòu)買香蕉數(shù)(千克)

不超過(guò)20千克

20千克以上但不超過(guò)40千克

40千克以上

每千克的價(jià)格

6元

5元

4元

張強(qiáng)兩次共購(gòu)買香蕉50千克,已知第二次購(gòu)買的數(shù)量多于第一次購(gòu)買的數(shù)量,共付出264元,請(qǐng)問(wèn)張強(qiáng)第一次,第二次分別購(gòu)買香蕉多少千克?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】若二次函數(shù)的圖象關(guān)于原點(diǎn)成中心對(duì)稱,我們就稱其中一個(gè)函數(shù)是另一個(gè)函數(shù)的中心對(duì)稱函數(shù),也稱函數(shù)互為中心對(duì)稱函數(shù).

求函數(shù)的中心對(duì)稱函數(shù);

如圖,在平面直角坐標(biāo)系xOy中,E,F(xiàn)兩點(diǎn)的坐標(biāo)分別為,,二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)E和原點(diǎn)O,頂點(diǎn)為已知函數(shù)互為中心對(duì)稱函數(shù);

請(qǐng)?jiān)趫D中作出二次函數(shù)的頂點(diǎn)作圖工具不限,并畫出函數(shù)的大致圖象;

當(dāng)四邊形EPFQ是矩形時(shí),請(qǐng)求出a的值;

已知二次函數(shù)互為中心對(duì)稱函數(shù),且的圖象經(jīng)過(guò)的頂點(diǎn)當(dāng)時(shí),求代數(shù)式的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在等腰中,,,點(diǎn)的中點(diǎn),點(diǎn)上,,將線段繞點(diǎn)按順時(shí)針?lè)较蛐D(zhuǎn)得到,連接,然后把沿著翻折得到,連接,取的中點(diǎn),連接,則的長(zhǎng)為(

A.B.C.2D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABEF,則∠A、∠C、∠D、∠E滿足的數(shù)量關(guān)系是( )

A. A+∠C+∠D+∠E360°B. A-∠C+∠D+∠E180°

C. E-∠C+∠D-∠A90°D. A+∠D=∠C+∠E

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】先閱讀下列材料:

我們已經(jīng)學(xué)過(guò)將一個(gè)多項(xiàng)式分解因式的方法有提公因式法和運(yùn)用公式法,其實(shí)分解因式的方法還有分組分解法、拆項(xiàng)法、十字相乘法等等.

(1)分組分解法:將一個(gè)多項(xiàng)式適當(dāng)分組后,可提公因式或運(yùn)用公式繼續(xù)分解的方法.

如:ax+by+bx+ay=ax+bx+ay+by

=xa+b+ya+b

=a+b)(x+y

2xy+y2﹣1+x2

=x2+2xy+y2﹣1

=x+y2﹣1

=x+y+1)(x+y﹣1

2拆項(xiàng)法:將一個(gè)多項(xiàng)式的某一項(xiàng)拆成兩項(xiàng)后,可提公因式或運(yùn)用公式繼續(xù)分解的方法.如:

x2+2x﹣3

=x2+2x+1﹣4

=x+12﹣22

=x+1+2)(x+1﹣2

=x+3)(x﹣1

請(qǐng)你仿照以上方法,探索并解決下列問(wèn)題:

(1)分解因式:

(2)分解因式:x2﹣6x﹣7;

(3)分解因式:

查看答案和解析>>

同步練習(xí)冊(cè)答案