如圖所示,在平行四邊形ABCD的對角線上AC上取兩點E和F,若AE=CF.
求證:∠AFD=∠CEB.

【答案】分析:可證△AFD≌△CEB,根據(jù)平行四邊形性質(zhì)有AD=BC,∠DAF=∠BCE;由AE=CF可得AF=CE,根據(jù)SAS得證.
解答:證明:四邊形ABCD是平行四邊形,
∵AD∥BC,AD=BC,
∴∠DAF=∠BCE,
∵AE=CF,
∴AE+EF=CF+EF,
即AF=CE,
∴△ADF≌△CBE,
∴∠AFD=∠CEB.
點評:此題考查了平行四邊形的性質(zhì)和三角形全等的判定,比較簡單.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,在矩形ABCD中AB=12,AC=20,兩條對角線相交于點O.以O(shè)B、OC為鄰邊作第1個平行四邊形OBB1C,對角線相交于點A1;再以A1B1、A1C為鄰邊作第2個平行四邊形A1B1C1C,對角線相交于點O1;再以O(shè)1B1,O1C1為鄰邊作第3個平行四邊形O1B1B2C1;…以此類推.
(1)矩形ABCD的面積為
192
192
;
(2)第1個平行四邊行OBB1C的面積為
96
96
;
第2個平行四邊形A1B1C1C的面積為
48
48
;
(3)第n個平行四邊形的面積為
192×(
1
2
)n
(或
192
2n
192×(
1
2
)n
(或
192
2n

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:022

已知如圖所示,在平行四邊ABCD中,對角線相交于點O,已知AB=24cm,BC=18cm,△AOB的周長是54cm那么△AOD的周長是________cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:022

已知如圖所示,在平行四邊ABCD中,對角線相交于點O,已知AB=24cm,BC=18cm,△AOB的周長是54cm那么△AOD的周長是________cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:022

如圖所示,在平行四邊行ABCD中,AD=3,∠DAB=60°,B點坐標(biāo)為(3,0).則A、D、C三點的坐標(biāo)分別為A________、D________、C________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖所示,在矩形ABCD中AB=12,AC=20,兩條對角線相交于點O.以O(shè)B、OC為鄰邊作第1個平行四邊形OBB1C,對角線相交于點A1;再以A1B1、A1C為鄰邊作第2個平行四邊形A1B1C1C,對角線相交于點O1;再以O(shè)1B1,O1C1為鄰邊作第3個平行四邊形O1B1B2C1;…以此類推.
(1)矩形ABCD的面積為______;
(2)第1個平行四邊行OBB1C的面積為______;
第2個平行四邊形A1B1C1C的面積為______;
(3)第n個平行四邊形的面積為______.

查看答案和解析>>

同步練習(xí)冊答案