如圖,若點A在反比例函數(shù)y=
k
x
(k≠0)的圖象上,且△AOM的面積是3,則k=
 
考點:反比例函數(shù)系數(shù)k的幾何意義
專題:
分析:過雙曲線上任意一點與原點所連的線段、坐標軸、向坐標軸作垂線所圍成的直角三角形面積S是個定值,即S=
1
2
|k|.
解答:解:∵△AMO的面積為3,
∴|k|=2×3=6.
又∵圖象在二,四象限,k<0,
∴k=-6.
故答案為:-6.
點評:此題考查了反比例函數(shù)y=
k
x
中k的幾何意義,即過雙曲線上任意一點引x軸、y軸垂線,所得矩形面積為|k|,是經(jīng)?疾榈囊粋知識點;體現(xiàn)了數(shù)形結(jié)合的思想,做此類題一定要正確理解k的幾何意義.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

當1≤x≤4時,函數(shù)y=-2x2+20x的最大值是
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:如圖,拋物線C1:y=ax2+4ax+c的圖象開口向上,與x軸交于點A、B(A在B的左邊),與y軸交于點C,頂點為P,AB=2,且OA=OC.
(1)求拋物線C1的對稱軸和函數(shù)解析式;
(2)把拋物線C1的圖象先向右平移3個單位,再向下平移m個單位得到拋物線C2,記頂點為M,并與y軸交于點F(0,-1),求拋物線C2的函數(shù)解析式;
(3)在(2)的基礎(chǔ)上,點G是y軸上一點,當△APF與△FMG相似時,求點G的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

東營市“創(chuàng)建文明城市”活動如火如荼的展開.某中學為了搞好“創(chuàng)城”活動的宣傳,校學生會就本校學生對東營“市情市況”的了解程度進行了一次調(diào)查測試.經(jīng)過對測試成績的分析,得到如下圖所示的兩幅不完整的統(tǒng)計圖.請你根據(jù)圖中提供的信息解答以下問題:
(1)求該校共有多少名學生;
(2)將條形統(tǒng)計圖補充完整;
(3)在扇形統(tǒng)計圖中,計算出“60-69分”部分所對應(yīng)的圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知平面上A、B、C、D四個點,按下列要求畫出圖形:
(1)連接AB、DC;
(2)作直線AC;
(3)作射線BD交AC于E;
(4)延長AD、BC相交于P;
(5)分別取AD、BC的中點F、H,連接FH.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【問題情境】
用同樣大小的黑色棋子按如圖1試試的規(guī)律擺放,則第2015個圖形共有多少枚棋子?

關(guān)于這個問題我們可以通過建立函數(shù)模型的方法求解
【建立模型】
上述圖形的規(guī)律我們可以借助建立函數(shù)模型來探討,具體步驟如下:
第一步:確定變量,即確定自變量和函數(shù)(因變量)
第二步:在直角坐標系中畫出函數(shù)圖象
第三步:根據(jù)函數(shù)圖象猜想并求函數(shù)關(guān)系式;
第四步:把另外的其它點代入驗證,若成立,則說明所求函數(shù)關(guān)系式能夠反映圖形擺放棋子的一班規(guī)律.
【解決問題】根據(jù)以上步驟,完成下列問題:
(1)上述問題情境中以
 
為自變量,以
 
為函數(shù);
(2)請在已知的直角坐標系中畫出圖象;
(3)猜想它是什么函數(shù)?求這個函數(shù)的關(guān)系式;
(4)求第2015個圖形中有多少枚棋子.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知
x
3
=
y
2
=-
z
5
,求分式
5x+3y-9z
x+2y+z
的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

將表示下列事件發(fā)生的概率的字母標在圖中:
(1)投擲一枚骰子,擲出7點的概率P1;
(2)在數(shù)學測驗中做一道四個選項的選擇題(單選題),由于不知道那個是正確選項,現(xiàn)任選一個,做對的概率P2;
(3)袋子中有兩個紅球,一個黃球,從袋子中任取一球是紅球的概率P3;
(4)太陽每天東升西落P4;
(5)在1~100之間,隨機抽出一個整數(shù)是偶數(shù)的概率P5

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在?ABCD中,E,F(xiàn)分別為邊AB、CD的中點,BD是對角線,過A作AG∥DB交CB的延長線于點G.
(1)求證:DE∥BF;
(2)若∠G=90°,試判定四邊形DEBF是怎樣的特殊四邊形?并說明理由.

查看答案和解析>>

同步練習冊答案