【題目】下框中是小明對(duì)一道題目的解答以及老師的批改.
題目:某村計(jì)劃建造如圖所示的矩形蔬菜溫室,要求長(zhǎng)與寬的比為2∶1,在溫室內(nèi),沿前側(cè)內(nèi)墻保留3 m的空地,其他三側(cè)內(nèi)墻各保留1 m的通道,當(dāng)溫室的長(zhǎng)與寬各為多少時(shí),矩形蔬菜種植區(qū)域的面積是288 m2?
解:設(shè)矩形蔬菜種植區(qū)域的寬為x_m,則長(zhǎng)為2xm,
根據(jù)題意,得x·2x=288.
解這個(gè)方程,得x1=-12(不合題意,舍去),x2=12,
所以溫室的長(zhǎng)為2×12+3+1=28(m),寬為12+1+1=14(m)
答:當(dāng)溫室的長(zhǎng)為28 m,寬為14 m時(shí),矩形蔬菜種植區(qū)域的面積是288 m2.
我的結(jié)果也正確!
小明發(fā)現(xiàn)他解答的結(jié)果是正確的,但是老師卻在他的解答中畫了一條橫線,并打了一個(gè)?.
結(jié)果為何正確呢?
(1)請(qǐng)指出小明解答中存在的問(wèn)題,并補(bǔ)充缺少的過(guò)程:變化一下會(huì)怎樣?
(2)如圖,矩形A′B′C′D′在矩形ABCD的內(nèi)部,AB∥A′B′,AD∥A′D′,且AD∶AB=2∶1,設(shè)AB與A′B′、BC與B′C′、CD與C′D′、DA與D′A′之間的距離分別為a、b、c、d,要使矩形A′B′C′D′∽矩形ABCD,a、b、c、d應(yīng)滿足什么條件?請(qǐng)說(shuō)明理由.
【答案】(1)小明沒(méi)有說(shuō)明矩形蔬菜種植區(qū)域的長(zhǎng)與寬之比為2∶1的理由;(2)=2.
【解析】
(1)根據(jù)題意可得小明沒(méi)有說(shuō)明矩形蔬菜種植區(qū)域的長(zhǎng)與寬之比為2:1的理由,所以由已知條件求出矩形蔬菜種植區(qū)域的長(zhǎng)與寬的關(guān)系即可;
(2)由使矩形A′B′C′D′∽矩形ABCD,利用相似多邊形的性質(zhì),可得=,然后利用比例的性質(zhì).
解 (1)小明沒(méi)有說(shuō)明矩形蔬菜種植區(qū)域的長(zhǎng)與寬之比為2∶1的理由.
在“設(shè)矩形蔬菜種植區(qū)域的寬為xm,則長(zhǎng)為2xm.”前補(bǔ)充以下過(guò)程:
設(shè)溫室的寬為xm,則長(zhǎng)為2xm.
則矩形蔬菜種植區(qū)域的寬為(x-1-1)m,長(zhǎng)為(2x-3-1)m.
∵==2,
∴矩形蔬菜種植區(qū)域的長(zhǎng)與寬之比為2∶1;
(2)要使矩形A′B′C′D′∽矩形ABCD,
就要=,即=,
即=,
即2AB-2(b+d)=2AB-(a+c),
∴a+c=2(b+d),
=2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在△ABC中,點(diǎn)D在邊AB上,點(diǎn)E在線段CD上,且∠ACD=∠B=∠BAE.
(1)求證:;
(2)當(dāng)點(diǎn)E為CD中點(diǎn)時(shí),求證:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】甲、乙兩人在相同條件下各射靶10次,每次射靶的成績(jī)情況如圖所示:
(1)請(qǐng)?zhí)顚懴卤恚?/span>
平均數(shù) | 方差 | 中位數(shù) | 命中9環(huán)以上(包括9環(huán))次數(shù) | |
甲 | 7 |
|
|
|
乙 |
| 5.4 |
|
|
(2)請(qǐng)你就下列兩個(gè)不同的角度對(duì)這次測(cè)試結(jié)果進(jìn)行
①從平均數(shù)和方差相結(jié)合看(分析誰(shuí)的成績(jī)更穩(wěn)定);
②從平均數(shù)和命中9環(huán)(包括9環(huán))以上次數(shù)相結(jié)合看(分析誰(shuí)的潛能更大).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖一,矩形中,,,是上一點(diǎn),將沿折疊,使點(diǎn)落在上一點(diǎn)處,連結(jié)、.
求的長(zhǎng)度;
設(shè)點(diǎn)、、分別在線段、、上,當(dāng)且四邊形為矩形時(shí),請(qǐng)說(shuō)明矩形的長(zhǎng)寬比為,并求的長(zhǎng).(如圖二)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)試銷一種成本為每件元的服裝,規(guī)定試銷期間銷售單價(jià)不低于成本單價(jià),且獲利不得高于,經(jīng)試銷發(fā)現(xiàn),銷售量(件)與銷售單價(jià)(元)符合一次函數(shù),且時(shí),;時(shí),.
求一次函數(shù)的表達(dá)式;
若該商場(chǎng)獲得利潤(rùn)為元,試寫出利潤(rùn)與銷售單價(jià)之間的關(guān)系式;銷售單價(jià)定為多少元時(shí),商場(chǎng)可獲得最大利潤(rùn),最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中,AD∥BC,∠ABC=90°,AB=5,BC=10,連接AC、BD,以BD為直徑的圓交AC于點(diǎn)E.若DE=3,則AD的長(zhǎng)為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC,DE∥BC,那么在下列三角形中,與△EBD相似的三角形是( 。
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC∽△ADE,∠BAC =∠ADE =90°,AB=4,AC=3,F是DE的中點(diǎn),若點(diǎn)E是直線BC上的動(dòng)點(diǎn),連接BF,則BF的最小值是_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,一次函數(shù)的圖象與 y軸交于點(diǎn)B(0,2),與反比例函數(shù)的圖象交于點(diǎn)A (4,-1).
(1)求反比例函數(shù)的表達(dá)式和一次函數(shù)表達(dá)式;
(2)若點(diǎn)C是y軸上一點(diǎn),且BC=BA,請(qǐng)直接寫出點(diǎn)C的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com