精英家教網 > 初中數學 > 題目詳情

【題目】如圖,在ABCD中,AC為對角線,AC=BC=5,AB=6,AE是ABC的中線.

(1)用無刻度的直尺畫出ABC的高CH(保留畫圖痕跡);

(2)求ACE的面積.

【答案】(1)詳見解析;(2)6.

【解析】

試題分析:(1)連接BD,BD與AE交于點F,連接CF并延長到AB,與AB交于點H,則CH為ABC的高;(2)根據等腰三角形三線合一的性質可求得AH的長,再由勾股定理求得CH的長,繼而求得ABC的面積,又由AE是ABC的中線,求得ACE的面積.

試題解析:(1)如圖,連接BD,BD與AE交于點F,連接CF并延長到AB,則它與AB的交點即為H.理由如下:

BD、AC是ABCD的對角線,

點O是AC的中點,

AE、BO是等腰ABC兩腰上的中線,

AE=BO,AO=BE,

AO=BE,

∴△ABO≌△BAE(SSS),

∴∠ABO=BAE,

ABF中,∵∠FAB=FBA,FA=FB,

∵∠BAC=ABC,

∴∠EAC=OBC,

可得AFCBFC(SAS)

∴∠ACF=BCF,即CH是等腰ABC頂角平分線,

所以CH是ABC的高;

(2)AC=BC=5,AB=6,CHAB,

AH=AB=3,

由勾股定理可得CH=4,

SABC=ABCH=×6×4=12,

AE是ABC的中線,

SACE=SABC=6.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖,已知一次函數y=kx﹣4k+5的圖象與反比例函數y= (x>0)的圖象相交于點A(p,q).當一次函數y的值隨x的值增大而增大時,p的取值范圍是

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,Rt△OAB的頂點A在x軸的正半軸上,頂點B的坐標為(3, ),點C的坐標為(,0),點P為斜邊OB上的一個動點,則PA+PC的最小值為( )

A. B. C. D. 2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(南陽唐河縣期中)如圖,在ABCD中,DE平分∠ADCABG,交CB的延長線于E,BF平分∠ABCAD的延長線于F.

(1)AD5,AB8,求GB的長;

(2)求證:∠EF.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】(徐州中考)如圖,在ABC中,∠ABC90°,BAC60°,ACD是等邊三角形,EAC的中點,連接BE并延長交DC于點F,求證:

(1)ABE≌△CFE

(2)四邊形ABFD是平行四邊形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,AB是半圓O的直徑,C、D是半圓O上的兩點,且OD∥BC,OD與AC交于點E.
(1)若∠B=70°,求∠CAD的度數;
(2)若AB=4,AC=3,求DE的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB6AD10,BAD的平分線交BC于點EDC的延長線于點F,BGAE,垂足為GAG2.5,△CEF的周長為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知a、b、c、d均為有理數,其中a是絕對值最小的有理數,b是最小的正整數,c2、4,c、d互為倒數,求:

(1)a×b的值;

(2)a+b+c﹣d的值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在矩形ABCD中,AB=1,AD=,AF平分∠DAB,過C點作CEBDE,延長AF.EC交于點H,下列結論中:①AF=FH;BO=BF;CA=CH;BE=3ED.正確的是( 。

A. ②③ B. ③④ C. ①②④ D. ②③④

查看答案和解析>>

同步練習冊答案