【題目】(徐州中考)如圖,在△ABC中,∠ABC=90°,∠BAC=60°,△ACD是等邊三角形,E是AC的中點(diǎn),連接BE并延長(zhǎng)交DC于點(diǎn)F,求證:
(1)△ABE≌△CFE;
(2)四邊形ABFD是平行四邊形.
【答案】(1)見解析;(2)見解析
【解析】試題分析:(1)根據(jù)等邊三角形的性質(zhì)得到∠DCA=60°等量代換得到∠DCA=∠BAC,根據(jù)全等三角形的判定定理即可得到結(jié)論;
(2)根據(jù)已知條件得到△ABE是等邊三角形,推出△CEF是等邊三角形,證得∠CFE=∠CDA,求得BF∥AD,即可得到結(jié)論;
試題解析:證明:(1)∵△ACD是等邊三角形,∴∠DCA=60°.∵∠BAC=60°,∴∠DCA=∠BAC.在△ABE與△CFE中,∵ ∠DCA=∠BAC,AE=CE,∠BEA=∠FEC ,∴△ABE≌△CFE;
(2)∵E是AC的中點(diǎn),∴BE=EA.∵∠BAE=60°,∴△ABE是等邊三角形,∴△CEF是等邊三角形,∴∠CFE=60°.∵△ACD是等邊三角形,∴∠CDA=∠DCA=60°,∴∠CFE=∠CDA,∴BF∥AD.∵∠DCA=∠BAC=60°,∴AB∥DC,∴四邊形ABFD是平行四邊形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,A(﹣3,2),B(﹣4,﹣3),C(﹣1,﹣1).
(1)在圖中作出△ABC關(guān)于y軸對(duì)稱的△A1B1C1;寫出點(diǎn)△A1,B1,C1的坐標(biāo)(直接寫答案):A1 ;B1 ;C1 ;
(2)△A1B1C1的面積為 ;
(3)在y軸上畫出點(diǎn)P,使PB+PC最小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解學(xué)生畢業(yè)后就讀普通高中或就讀中等職業(yè)技術(shù)學(xué)校的意向,某校對(duì)八、九年級(jí)部分學(xué)生進(jìn)行了一次調(diào)查,調(diào)查結(jié)果有三種情況:只愿意就讀普通高中;只愿意就讀中等職業(yè)技術(shù)學(xué)校;就讀普通高中或中等職業(yè)技術(shù)學(xué)校都愿意學(xué)校教務(wù)處將調(diào)查數(shù)據(jù)進(jìn)行了整理,并繪制了尚不完整的統(tǒng)計(jì)圖如下,請(qǐng)根據(jù)相關(guān)信息,解答下列問題:
本次活動(dòng)一共調(diào)查的學(xué)生數(shù)為______名;
補(bǔ)全圖一,并求出圖二中A區(qū)域的圓心角的度數(shù);
若該校八、九年級(jí)學(xué)生共有2800名,請(qǐng)估計(jì)該校八、九年級(jí)學(xué)生只愿意就讀中等職業(yè)技術(shù)學(xué)校的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x、y的方程組,其中﹣3≤a≤1,給出下列說(shuō)法:①當(dāng)a=1時(shí),方程組的解也是方程x+y=2﹣a的解;②當(dāng)a=﹣2時(shí),x、y的值互為相反數(shù);③若x≤1,則1≤y≤4;④是方程組的解.其中說(shuō)法錯(cuò)誤的是( 。
A. ①②③④ B. ①②③ C. ②④ D. ②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)A、B在坐標(biāo)軸上,其中A(0,a)、B(b,0)滿足:|2a﹣b﹣1|+=0.
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)將線段AB平移到CD,點(diǎn)A的對(duì)應(yīng)點(diǎn)為C(﹣2,t),如圖1所示.若三角形ABC的面積為9,求點(diǎn)D的坐標(biāo);
(3)平移線段AB到CD,若點(diǎn)C、D也在坐標(biāo)軸上,如圖2所示,P為線段AB上的一動(dòng)點(diǎn)(不與A、B重合),連接OP,PE平分∠OPB,∠BCE=2∠ECD.求證:∠BCD=3(∠CEP﹣∠OPE).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在ABCD中,AC為對(duì)角線,AC=BC=5,AB=6,AE是△ABC的中線.
(1)用無(wú)刻度的直尺畫出△ABC的高CH(保留畫圖痕跡);
(2)求△ACE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在讀書月活動(dòng)中,學(xué)校準(zhǔn)備購(gòu)買一批課外讀物.為使課外讀物滿足同學(xué)們的需求,學(xué)校就“我最喜愛的課外讀物”從文學(xué)、藝術(shù)、科普和其他四個(gè)類別進(jìn)行了抽樣調(diào)查(每位同學(xué)只選一類),如圖是根
據(jù)調(diào)查結(jié)果繪制的兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問題:
(1)本次調(diào)查中,一共調(diào)查了 名同學(xué);
(2)條形統(tǒng)計(jì)圖中,m= ,n= ;
(3)扇形統(tǒng)計(jì)圖中,藝術(shù)類讀物所在扇形的圓心角是 度;
(4)學(xué)校計(jì)劃購(gòu)買課外讀物6000冊(cè),請(qǐng)根據(jù)樣本數(shù)據(jù),估計(jì)學(xué)校購(gòu)買其他類讀物多少冊(cè)比較合理?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,平面直角坐標(biāo)系內(nèi),點(diǎn)A(a,0),B(b,2),C(0,2),且a、b是方程組的解,求:
(1)a、b的值.
(2)過(guò)點(diǎn)E(6,0)作PE∥y軸,點(diǎn)Q(6,m)是直線PE上一動(dòng)點(diǎn),連QA、QB,試用含有m的式子表示△ABQ的面積.
(3)在(2)的條件下.當(dāng)△ABQ的面積是梯形OABC面積一半時(shí),求Q點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)C在線段AB上,AC=6cm,MB=10cm,點(diǎn)M、N分別為AC、BC的中點(diǎn).
(1)求線段BC的長(zhǎng);
(2)求線段MN的長(zhǎng);
(3)若C在線段AB延長(zhǎng)線上,且滿足AC﹣BC=b cm,M,N分別是線段AC,BC的中點(diǎn),你能猜想MN的長(zhǎng)度嗎?請(qǐng)寫出你的結(jié)論(不需要說(shuō)明理由).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com