【題目】如圖,在四邊形ABCD中,AB=AD=8,∠A=60°,∠ADC=150°,四邊形ABCD的周長為32.
(1)求∠BDC的度數(shù);
(2)四邊形ABCD的面積.
【答案】(1)90°;(2)24+16
【解析】
(1)先根據(jù)題意得出△ABD是等邊三角形,△BCD是直角三角形,進而可求出∠BDC的度數(shù);
(2)根據(jù)四邊形周長計算BC,CD,即可求△BCD的面積,正△ABD的面積根據(jù)計算公式計算,即可求得四邊形ABCD的面積為兩個三角形的面積的和.
(1)∵AB=AD=8cm,∠A=60°,∴△ABD是等邊三角形.
∵∠ADC=150°,∴∠BDC=150°﹣60°=90°;
(2)∵△ABD為正三角形,AB=8cm,∴其面積為××AB×AD=16.
∵BC+CD=32﹣8﹣8=16,且BD=8,BD2+CD2=BC2,解得:BC=10,CD=6,∴直角△BCD的面積=×6×8=24,故四邊形ABCD的面積為24+16.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形ABCD是正方形,E、F分別是DC和CB的延長線上的點,且DE=BF,連接AE、AF、EF.
(1)填空:△ABF可以由△ADE繞旋轉(zhuǎn)中心點 , 按逆時針方向旋轉(zhuǎn)度得到;
(2)若BC=8,DE=6,求△AEF的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將△ABC繞O點順時針旋轉(zhuǎn)50°得△A1B1C1(A、B分別對應(yīng)A1、B1),則直線AB與直線A1B1的夾角(銳角)為( )
A.130°
B.50°
C.40°
D.60°
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在一次測繪活動中,某同學站在點A處觀測停放于B、C兩處的小船,測得船B在點A北偏東75°方向150米處,船C在點A南偏東15°方向120米處,則船B與船C之間的距離為______米(精確到0.1).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點A(﹣3,0),該拋物線的對稱軸為直線x=﹣1,若點C(﹣ ,y1),D(﹣ ,y2),E( ,y3)均為函數(shù)圖象上的點,則y1 , y2 , y3的大小關(guān)系為 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,拋物線C1:y=ax2+4x+4a(0<a<2)
(1)當C1與x軸有唯一一個交點時,求此時C1的解析式;
(2)如圖①,若A(1,yA),B(0,yB),C(﹣1,yC)三點均在C1上,連BC作AE∥BC交拋物線C1于E,求點E到y(tǒng)軸的距離;
(3)若a=1,將拋物線C1先向右平移3個單位,再向下平移2個單位得到拋物線C2 , 如圖②,拋物線C2與x軸相交于點M、N(M點在N點的左邊),拋物線的對稱軸交x軸于點F,過點F的直線l與拋物線C2相交于P,Q(P在第四象限)且S△FMQ=2S△FNP , 求直線l的解析式.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,∠C=90°,AC=BC,AD平分∠CAB交BC于點D,DE⊥AB,垂足為E,且AB=6cm,則△DEB的周長為( )
A. 4cm B. 6cm C. 8cm D. 10cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC中,AB=AC,CD⊥AB于D.
(1)若∠A=38,求∠DCB的度數(shù);
(2)若AB=5,CD=3,求BC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b(k≠0)與反比例函數(shù)y= (m≠0)的圖象有公共點A(1,a)、D(﹣2,﹣1).直線l與x軸垂直于點N(3,0),與一次函數(shù)和反比例函數(shù)的圖象分別交于點B、C.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)圖象回答,x在什么范圍內(nèi),一次函數(shù)的值大于反比例函數(shù)的值;
(3)求△ABC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com