【題目】完善下列解題步輩.井說明解題依據(jù).

如圖,已知∠1=∠2,∠B=∠C,求證:AB∥CD.

證明:∵∠1=∠2(已知)

∠1=∠CGD______

∴∠2=∠CGD______

∴______∥____________),

∴∠C=____________

∵∠B=∠C(已知)

∴______=∠B

AB∥CD______

【答案】對頂角相等,等量代換,ECBF,同位角相等兩直線平行,∠DFH,兩直線平行同位角相等,∠DFH,內錯角相等兩直線平行.

【解析】

利用平行線的判定和性質等知識即可解決問題.

證明:∵∠1=∠2(已知)

∠1=∠CGD(對頂角相等)

∴∠2=∠CGD(等量代換)

∴EC∥BF(同位角相等兩直線平行),

∴∠C=∠DFH(兩直線平行同位角相等)

∵∠B=∠C(已知)

∴∠DFH=∠B

AB∥CD(內錯角相等兩直線平行).

故答案為:對頂角相等,等量代換,ECBF,同位角相等兩直線平行,∠DFH,兩直線平行同位角相等,∠DFH,內錯角相等兩直線平行.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在學習了數(shù)軸后,小亮決定對數(shù)軸進行變化應用:

1)應用一:已知點在數(shù)軸上表示為-2,數(shù)軸上任意一點表示的數(shù)為,則兩點的距離可以表示為 ;應用這個知識,請寫出當 時, 有最小值為

2)應用二:從數(shù)軸上取下一個單位長度的線段,第一次剪掉原長的,第二次剪掉剩下的,依此類推,每次都剪掉剩下的,則剪掉4次后剩下線段長度為 ;應用這個原理,請計算:;

3)應用三:如圖,將一根拉直的細線看作數(shù)軸,一個三邊長分別為,,的三角形的頂點與原點重合,邊在數(shù)軸正半軸上,將數(shù)軸正半軸的線沿的順序依次纏繞在三角形的邊上,負半軸的線沿的順序依次纏繞在三角形的邊上.

①如果正半軸的線纏繞了3圈,負半軸的線纏繞了5圈,求繞在點上的所有數(shù)之和;

②如果正半軸的線不變,將負半軸的線拉長一倍,即原線上的點-2的位置對應著拉長后的數(shù)-1,并將三角形向正半軸平移一個單位后再開始繞,求繞在點且絕對值不超過60的所有數(shù)之和.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某水果零售商店分兩批次從批發(fā)市場共購進紅富士蘋果100箱,已知第一、二次進貨價分別為每箱50元、40元,且第二次比第一次多付款400元.

1)求第一、二次分別購進紅富士蘋果各多少箱?

2)商店對這100紅富士蘋果先按每箱60元銷售了75箱后出現(xiàn)滯銷,于是決定其余的每箱靠打折銷售完.要使商店銷售完全部紅富士蘋果所獲得的利潤不低于1300元,問其余的每箱至少應打幾折銷售?(注:按整箱出售,利潤=銷售總收人﹣進貨總成本)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,圖①是一個長為2m,寬為2n的長方形.沿圖中虛線把它分割成四塊完全相同的小長方形,然后按圖②的形狀拼成一個正方形.

(1)求圖②中陰影部分的面積.

(2)觀察圖②,發(fā)現(xiàn)三個代數(shù)式(mn)2,(mn)2,mn之間的等量關系是

(3)xy=-6,xy2.75,求xy的值.

(4)觀察圖③,你能得到怎樣的代數(shù)恒等式?

(5)試畫出一個幾何圖形,使它的面積能表示代數(shù)恒等式(mn)(m3n)m24mn3n2.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,EF90°,BCAEAF,結論:EMFNAF

EB;③∠FANEAM;④△ACNABM其中正確的有

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知AM∥CN,點B為平面內一點,AB⊥BCB

1)如圖1,直接寫出∠A∠C之間的數(shù)量關系;

2)如圖2,過點BBD⊥AM于點D,求證:∠ABD=∠C;

3)如圖3,在(2)問的條件下,點E.FDM上,連接BE.BF.CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠ABF=2∠ABE,求∠EBC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,I點為△ABC的內心,D點在BC上,且IDBC,若∠B=44°,C=56°,則∠AID的度數(shù)為何?( 。

A. 174 B. 176 C. 178 D. 180

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,某輪船上午8時在A處,測得燈塔S在北偏東60°的方向上,向東行駛至中午11時,該輪船在B處,測得燈塔S在北偏西30°的方向上(自己完成圖形),已知輪船行駛速度為每小時60千米,求∠ASB的度數(shù)及AB的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1AB=12,ACAB,BDABAC=BD=8P在線段AB上以每秒2個單位的速度由點A向點B運動,同時,點Q在線段BD上由B點向點D運動。它們的運動時間為t(s).

1)若點Q的運動速度與點P的運動速度相等,當t=2時,ACPBPQ是否全等,請說明理由,并判斷此時線段PC和線段PQ的位置關系;

2)如圖2,將圖1中的ACABBDAB改為CAB=DBA=60°”,其他條件不變。設點Q的運動速度為每秒x個單位,是否存在實數(shù)x,使得ACPBPQ全等?若存在,求出相應的x,t的值;若不存在,請說明理由。

查看答案和解析>>

同步練習冊答案