【題目】某水果零售商店分兩批次從批發(fā)市場共購進“紅富士”蘋果100箱,已知第一、二次進貨價分別為每箱50元、40元,且第二次比第一次多付款400元.
(1)求第一、二次分別購進“紅富士”蘋果各多少箱?
(2)商店對這100箱“紅富士”蘋果先按每箱60元銷售了75箱后出現(xiàn)滯銷,于是決定其余的每箱靠打折銷售完.要使商店銷售完全部“紅富士”蘋果所獲得的利潤不低于1300元,問其余的每箱至少應(yīng)打幾折銷售?(注:按整箱出售,利潤=銷售總收人﹣進貨總成本)
【答案】(1)第一次購進“紅富士”蘋果40箱,第二次購進“紅富士”蘋果60箱;(2)其余的每箱至少應(yīng)打8折銷售.
【解析】
(1)設(shè)第一次購進“紅富士”蘋果x箱,則第二次購進“紅富士”蘋果箱,根據(jù)“總價單價數(shù)量”,結(jié)合第二次比第一次多付款400元,即可得出關(guān)于x的一元一次方程,解方程即可得出結(jié)論;
(2)設(shè)其余的每箱應(yīng)打y折銷售,根據(jù)“利潤銷售總收人進貨總成本”,結(jié)合所獲得的利潤不低于1300元,即可得出關(guān)于y的一元一次不等式,解不等式取其中的最小值即可得出結(jié)論.
(1)設(shè)第一次購進“紅富士”蘋果x箱,則第二次購進“紅富士”蘋果箱
由題意得:
解得:
則
答:第一次購進“紅富士”蘋果40箱,第二次購進“紅富士”蘋果60箱;
(2)設(shè)其余的每箱應(yīng)打y折銷售
由題意得:
解得:
答:其余的每箱至少應(yīng)打8折銷售.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一輛客車從甲地開住乙地,一輛出租車從乙地開往甲地,兩車同時出發(fā),兩車距甲地的距離y(千米)與行駛時間式(小時)之間的函數(shù)圖象如圖所示,則下列說法中錯誤的是( 。
A. 客車比出租車晚4小時到達目的地B. 客車速度為60千米時,出租車速度為100千米/時
C. 兩車出發(fā)后3.75小時相遇D. 兩車相遇時客車距乙地還有225千米
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:AB∥CD,平面內(nèi)有一點E,連接AE、CE
(1)如圖1,求證:∠E=∠A+∠C;
(2)如圖2,CD上有一點F,連接AF、EF,若∠FAE=∠FEA,∠EFD=2∠C,求證:∠AFC=2∠AEC;
(3)如圖3,在(2)的條件下,平面內(nèi)有一點G,連接AG、CG,若∠GCE與∠GAE互為補角,5∠AFC=2∠G,求∠G的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場計劃購進A,B兩種型號的手機,已知每部A型號手機的進價比每部B型號手機進價多500元,每部A型號手機的售價是2500元,每部B型號手機的售價是2100元.
(1)若商場用50000元共購進A型號手機10部,B型號手機20部,求A、B兩種型號的手機每部進價各是多少元?
(2)為了滿足市場需求,商場決定用不超過7.5萬元采購A、B兩種型號的手機共40部,且A型號手機的數(shù)量不少于B型號手機數(shù)量的2倍.
①該商場有哪幾種進貨方式?
②該商場選擇哪種進貨方式,獲得的利潤最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,A、B、C、D是反比例函數(shù)y=(x>0)圖象上四個整數(shù)點(橫、縱坐標均為整數(shù)),分別過這些點向橫軸或縱軸作垂線段,以垂線段所在的正方形(如圖)的邊長為半徑作四分之一圓周的兩條弧,組成四個橄欖形(陰影部分),則這四個橄欖形的面積總和是__________(用含π的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC的三邊a,b,c,滿足a+b2+|c﹣6|+28=4+10b,則△ABC的外接圓半徑=__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對非負有理數(shù)x“四舍五入”到個位的值記為<x>.即n為非負整數(shù)時,如果時, 則<x>=n,例如:<0>=<0.48>=0;<0.64>=<1.493>=1;<2>=2;<3.52>=<4.48>=4;……嘗試解決下列問題:
(1)填空:①<3.49>=__________;②如果<2a-1>=3,那么a的取值范圍是__________;
(2)舉例說明<x+y>=<x> + <y>不恒成立;
(3)求滿足<x>=的所有非負有理數(shù)x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】完善下列解題步輩.井說明解題依據(jù).
如圖,已知∠1=∠2,∠B=∠C,求證:AB∥CD.
證明:∵∠1=∠2(已知)
且∠1=∠CGD(______)
∴∠2=∠CGD(______)
∴______∥______(______),
∴∠C=______(______)
又∵∠B=∠C(已知)
∴______=∠B
AB∥CD(______)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】點P、Q分別是邊長為4cm的等邊的邊AB、BC上的動點,點P從頂點A,點Q從頂點B同時出發(fā),且它們的速度都是,設(shè)運動時間為t秒.
連接AQ、CP交于點M,則在P、Q運動的過程中,變化嗎:若變化,則說明理由,若不變,則求出它的度數(shù);
連接PQ,
當(dāng)秒時,判斷的形狀,并說明理由;
當(dāng)時,則______秒直接寫出結(jié)果
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com