【題目】如圖,△ABC中,∠C=90°,AB=13,AC=5,BC=12,點(diǎn)O為∠ABC與∠CAB平分線的交點(diǎn),則點(diǎn)O到邊AB的距離為______.
【答案】2
【解析】
作OE⊥BC,OF⊥AC,根據(jù)垂直定義得出∠C=∠CFO=∠OEC=90°,即可推出四邊形CFOE是矩形,根據(jù)角平分線性質(zhì)求出OE=OF=OP,即可推出矩形CFOE是正方形,設(shè)OE=OP=OF=x,則AP=AF=5-x,BP=BE=12-x,根據(jù)PA+PB=AB=13,列出等式即可解得.
解:如圖:設(shè)點(diǎn)O到邊AB的距離為OP
作OE⊥BC,OF⊥AC,
∴∠C=∠CFO=∠OEC=90°,
∴四邊形CFOE是矩形;
∵∠CAB,∠CBA的平分線相交于點(diǎn)O,OE⊥BC,OF⊥AC,OP⊥AB,
∴OE=OP=OF,
∴四邊形CFOE是正方形,
設(shè)OE=OP=OF=x,則AP=AF=5-x,BP=BE=12-x,
∴5-x+12-x=13,
解得x=2,
∴OP=OE=2.
故答案為2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】東東玩具商店用500元購(gòu)進(jìn)一批悠悠球,很受中小學(xué)生歡迎,悠悠球很快售完,接著又用900元購(gòu)進(jìn)第二批這種悠悠球,所購(gòu)數(shù)量是第一批數(shù)量的1.5倍,但每套進(jìn)價(jià)多了5元.
(1)求第一批悠悠球每套的進(jìn)價(jià)是多少元;
(2)如果這兩批悠悠球每套售價(jià)相同,且全部售完后總利潤(rùn)不低于25%,那么每套悠悠球的售價(jià)至少是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB∥CD.
(1)用直尺和圓規(guī)按要求作圖:作∠ACD的平分線CP,CP交AB于點(diǎn)P;作AF⊥CP,垂足為F.
(2)判斷直線AF與線段CP的關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD中,已知AB=3,點(diǎn)E,F(xiàn)分別在BC、CD上,且∠BAE=30°,∠DAF=15°,則△AEF的面積為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在大課間活動(dòng)中,體育老師隨機(jī)抽取了七年級(jí)甲、乙兩班部分女學(xué)生進(jìn)行仰臥起坐的測(cè)試,并對(duì)成績(jī)進(jìn)行統(tǒng)計(jì)分析,繪制了頻數(shù)分布表和統(tǒng)計(jì)圖,請(qǐng)你根據(jù)圖表中的信息完成下列問(wèn)題:
分 組 | 頻數(shù) | 頻率 |
第一組(0≤x<15) | 3 | 0.15 |
第二組(15≤x<30) | 6 | a |
第三組(30≤x<45) | 7 | 0.35 |
第四組(45≤x<60) | b | 0.20 |
(1)頻數(shù)分布表中a=_____,b=_____,并將統(tǒng)計(jì)圖補(bǔ)充完整;
(2)如果該校七年級(jí)共有女生180人,估計(jì)仰臥起坐能夠一分鐘完成30或30次以上的女學(xué)生有多少人?
(3)已知第一組中只有一個(gè)甲班學(xué)生,第四組中只有一個(gè)乙班學(xué)生,老師隨機(jī)從這兩個(gè)組中各選一名學(xué)生談心得體會(huì),則所選兩人正好都是甲班學(xué)生的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過(guò)點(diǎn)O作OE∥AB,交BC于E.
(1)求證:ED為⊙O的切線;
(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙O于F,連接DF、AF,求△ADF的面積.
【答案】(1)證明見(jiàn)解析;(2)
【解析】試題分析:(1)首先連接OD,由OE∥AB,根據(jù)平行線與等腰三角形的性質(zhì),易證得≌ 即可得,則可證得為的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OE∥AB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得與的長(zhǎng),然后利用S△ADF=S梯形ABEF-S梯形DBEF求得答案.
試題解析:(1)證明:連接OD,
∵OE∥AB,
∴∠COE=∠CAD,∠EOD=∠ODA,
∵OA=OD,
∴∠OAD=∠ODA,
∴∠COE=∠DOE,
在△COE和△DOE中,
∴△COE≌△DOE(SAS),
∴ED⊥OD,
∴ED是的切線;
(2)連接CD,交OE于M,
在Rt△ODE中,
∵OD=32,DE=2,
∵OE∥AB,
∴△COE∽△CAB,
∴AB=5,
∵AC是直徑,
∵EF∥AB,
∴S△ADF=S梯形ABEFS梯形DBEF
∴△ADF的面積為
【題型】解答題
【結(jié)束】
25
【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.
(1)求b與a的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求△DMN的面積與a的關(guān)系式;
(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱(chēng),現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在五一期間,小明、小亮等同學(xué)隨家長(zhǎng)一同到某公園游玩,下面是購(gòu)買(mǎi)門(mén)票時(shí),小明與他爸爸的對(duì)話(huà)(如圖),試根據(jù)圖中的信息,解答下列問(wèn)題:
(1)小明他們一共去了幾個(gè)成人,幾個(gè)學(xué)生?
(2)請(qǐng)你幫助小明算一算,用哪種方式購(gòu)票更省錢(qián)?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某經(jīng)銷(xiāo)商銷(xiāo)售一種產(chǎn)品,這種產(chǎn)品的成本價(jià)為10元/千克,市場(chǎng)調(diào)查發(fā)現(xiàn),該產(chǎn)品每天的銷(xiāo)售量y(千克)與銷(xiāo)售價(jià)x(元/千克,且10≤x≤18)之間的函數(shù)關(guān)系如圖所示:
(1)求y(千克)與銷(xiāo)售價(jià)z的函數(shù)關(guān)系式;
(2)該經(jīng)銷(xiāo)商想要每天獲得150元的銷(xiāo)售利潤(rùn),銷(xiāo)售價(jià)應(yīng)定為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,AB=4,AD=3,矩形內(nèi)部有一動(dòng)點(diǎn)P滿(mǎn)足S△PAB=S矩形ABCD,則點(diǎn)P到A、B兩點(diǎn)的距離之和PA+PB的最小值為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com