【題目】通過類比聯(lián)想、引申拓展研究典型題目,可達到解一題知一類的目的.下面是一個案例.
原題:如圖①,點分別在正方形的邊上, ,連接,則,試說明理由.
(1)思路梳理
因為,所以把繞點逆時針旋轉90°至,可使與 重合.因為,所以,點共線.
根據 ,易證 ,得.請證明.
(2)類比引申
如圖②,四邊形中, , ,點分別在邊上, .若都不是直角,則當與滿足等量關系時, 仍然成立,請證明.
(3)聯(lián)想拓展
如圖③,在中, ,點均在邊上,且.猜想應滿足的等量關系,并寫出證明過程.
【答案】(1)SAS,△AFE;(2);(3).
【解析】試題分析:(1)把△ABE繞點A逆時針旋轉90°至△ADG,可使AB與AD重合,再證明△AFG≌△AFE進而得到EF=FG,即可得EF=BE+DF;
(2)∠B+∠D=180°時,EF=BE+DF,與(1)的證法類同;
(3)根據△AEC繞點A順時針旋轉90°得到△ABE′,根據旋轉的性質,可知△AEC≌△ABE′得到BE′=EC,AE′=AE,∠C=∠ABE′,∠EAC=∠E′AB,根據Rt△ABC中的,AB=AC得到∠E′BD=90°,所以E′B2+BD2=E′D2,證△AE′D≌△AED,利用DE=DE′得到DE2=BD2+EC2;
試題解析:解:(1)∵AB=AD,∴把△ABE繞點A逆時針旋轉90°至△ADG,可使AB與AD重合,∴∠BAE=∠DAG,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠EAF=∠FAG,∵∠ADC=∠B=90°,∴∠FDG=180°,點F、D、G共線,在△AFE和△AFG中,∵AE=AG,∠EAF=∠FAG,AF=AF,∴△AFE≌△AFG(SAS),∴EF=FG,即:EF=BE+DF.
(2)∠B+∠D=180°時,EF=BE+DF;
∵AB=AD,∴把△ABE繞點A逆時針旋轉90°至△ADG,可使AB與AD重合,∴∠BAE=∠DAG,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠EAF=∠FAG,∵∠ADC+∠B=180°,∴∠FDG=180°,點F、D、G共線,在△AFE和△AFG中,∵AE=AG,∠FAE=∠FAG,AF=AF,∴△AFE≌△AFG(SAS),∴EF=FG,即:EF=BE+DF.
(3)猜想:DE2=BD2+EC2,理由如下:
根據ΔABD繞點A逆時針旋轉90°得到ΔACD′,如圖,連接ED′.
∴ΔABDΔACD′.
∴CD′=BD,AD′=AD,∠B=∠ACD′,∠BAD=∠D′ AC.
在RtΔABC中,∵AB=AC,∴∠ABC=∠ACB=45°.
∴∠ACB+∠ACD′=90°,即∠D′ CE=90°,∴D’C2+CE2=D′E2.
又∵∠DAE=45°,∴∠BAD+∠EAC=45°.
∴∠D′AC+∠EAC=45°,即∠D′ AE=45°.∴ΔAD′ EΔADE,∴ED=ED′,∴DE2=BD2+EC2.
科目:初中數(shù)學 來源: 題型:
【題目】某校八年級學生全部參加“初二生物地理會考”,從中抽取了部分學生的生物考試成績,將他們的成績進行統(tǒng)計后分為A,B,C,D四等,并將統(tǒng)計結果繪制成如下的統(tǒng)計圖,請結合圖中所給的信息解答下列問題
(1)抽取了______名學生成績;(2)請把條形統(tǒng)計圖補充完整;
(3)扇形統(tǒng)計圖中等級D所在的扇形的圓心角度數(shù)是______;
(4)若A,B,C代表合格,該校初二年級有300名學生,求全年級生物合格的學生共約多少人
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小亮、小穎的手上都有兩根長度分別為5、8的木棒,小亮與小穎都想通過轉動轉盤游戲來獲取第三根木棒,如圖,一個均勻的轉盤被平均分成6等份,分別標有木棒的長度2,3,5,8,10,12這6個數(shù)字.小亮與小穎各轉動轉盤一次,停止后,指針指向的數(shù)字即為轉出的第三根木棒的長度.若三根木棒能組成三角形則小亮獲勝,三根木棒能組成等腰三角形則小穎獲勝.
(1)小亮獲勝的概率是 ;
(2)小穎獲勝的概率是 ;
(3)請你用這個轉盤設計一個游戲,使得對小亮與小穎均是公平的;
(4)小穎發(fā)現(xiàn),她連續(xù)轉動轉盤10次,都沒轉到5和8,能不能就說小穎獲勝的可能性為0?為什么?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC=2,∠B=∠C=40°,點D在線段BC上運動(D不與B、C重合),連接AD,作∠ADE=40°,DE交線段AC于E.
(1)當∠BDA=115°時,∠EDC=______°,∠DEC=______°;點D從B向C運動時,∠BDA逐漸變______(填“大”或“小”);
(2)當DC等于多少時,△ABD≌△DCE,請說明理由;
(3)在點D的運動過程中,△ADE的形狀可以是等腰三角形嗎?若可以,請直接寫出∠BDA的度數(shù).若不可以,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】隨著人們生活質量的提高,凈水器已經慢慢走入了普通百姓家庭,某電器公司銷售每臺進價分別為2000元、1700元的A、B兩種型號的凈水器,下表是近兩周的銷售情況:
(1)求A,B兩種型號的凈水器的銷售單價;
(2)若電器公司準備用不多于54000元的金額在采購這兩種型號的凈水器共30臺,求A種型號的凈水器最多能采購多少臺?
(3)在(2)的條件下,公司銷售完這30臺凈水器能否實現(xiàn)利潤為12800元的目標?若能,請給出相應的采購方案;若不能,請說明理由.
銷售時段 | 銷售數(shù)量 | 銷售收入 | |
A種型號 | B種型號 | ||
第一周 | 3臺 | 5臺 | 18000元 |
第二周 | 4臺 | 10臺 | 31000元 |
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場要經營一種新上市的文具,進價為20元∕件.試銷階段發(fā)現(xiàn):當銷售價為25元∕件時,每天的銷售量是250件,銷售價每上漲1元,每天的銷售量就減少10件.
(1)寫出商場銷售這種文具,每天所得的銷售利潤(元)與銷售單價(元)之間的函數(shù)關系式.
(2)求銷售單價為多少元時,該文具每天的銷售利潤最大?
(3)在保證銷售量盡可能大的前提下,該商場想獲得每天2000元的利潤,應該將銷售價定為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖:(1)寫出△ABC中點A、點C坐標;(2)畫出△ABC繞點A管好逆時針旋轉90°后的△AB'C';(3)在(2)的條件下,求點C旋轉到C'所經過的路線長。(結果保留)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在如圖所示的平面直角坐標系中,是邊長為的等邊三角形,作與關于點成中心對稱,再作與關于點成中心對稱,如此作下去,則.(是正整數(shù))的頂點的坐標是___________________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,矩形BCDE的各邊分別平行于x軸與y軸,物體甲和物體乙由點A(2,0)同時出發(fā),沿矩形BCDE的邊作環(huán)繞運動,物體甲按逆時針方向以1個單位/秒勻速運動,物體乙按順時針方向以2個單位/秒勻速運動,則兩個物體運動后的第2018次相遇地點的坐標是( 。
A. (1,﹣1) B. (2,0) C. (﹣1,1) D. (﹣1,﹣1)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com