【題目】(12分)如圖,在矩形ABCD中,AB=12cm,BC=8cm.點(diǎn)E、F、G分別從點(diǎn)
A、B、C同時(shí)出發(fā),沿矩形的邊按逆時(shí)針方向移動(dòng),點(diǎn)E、G的速度均為2cm/s,點(diǎn)F的速
度為4cm/s,當(dāng)點(diǎn)F追上點(diǎn)G(即點(diǎn)F與點(diǎn)G重合)時(shí),三個(gè)點(diǎn)隨之停止移動(dòng).設(shè)移動(dòng)開始后
第ts時(shí),△EFG的面積為Scm2.
(1)當(dāng)t=1s時(shí),S的值是多少?
(2)寫出S與t之間的函數(shù)解析式,并指出自變量t的取值范圍;
(3)若點(diǎn)F在矩形的邊BC上移動(dòng),當(dāng)t為何值時(shí),以點(diǎn)B、E、F為頂點(diǎn)的三角形與以C、F、G為頂點(diǎn)的三角形相似?請(qǐng)說明理由。
【答案】解:(1)如圖(甲),當(dāng)秒時(shí),AE=2,EB=10,BF=4,FC=4,CG=2
由
=
(2)①如圖(甲),當(dāng)時(shí),點(diǎn)E、F、G分別在邊AB、BC、CD上移動(dòng),
此時(shí)
即()
②如圖(乙)當(dāng)點(diǎn)F追上點(diǎn)G時(shí),,解得.
當(dāng)時(shí),點(diǎn)E在邊AB上移動(dòng),點(diǎn)F、G都在邊CD上移動(dòng).
此時(shí)CF=.CG=.
FG=CG-CF=
即 ()
(3)如圖(甲),當(dāng)點(diǎn)F在矩形的邊BC上移動(dòng)時(shí),.
在△EBF和△FCG中,∠B=∠C=90°.
①若.即,解得。
又滿足,所以當(dāng)時(shí),△EBF∽△FCG.
②若.即,解得。
又滿足,所以當(dāng)時(shí),△EBF∽△GCF.
綜上所述,當(dāng)或時(shí),以點(diǎn)E、B、F為頂點(diǎn)的三角形與以F、C、G為頂點(diǎn)的三角形相似.
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,四邊形ABCD是菱形,點(diǎn)A(0,4),B(﹣3,0)反比例函數(shù)y=(k為常數(shù),k≠0,x>0)的圖象經(jīng)過點(diǎn)D.
(1)填空:k=_____.
(2)已知在y=的圖象上有一點(diǎn)N,y軸上有一點(diǎn)M,且四邊形ABMN是平行四邊形,求點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,過點(diǎn)F(0,1)的直線y=kx+b與拋物線交于M(x1,y1)和N(x2,y2)兩點(diǎn)(其中x1<0,x2<0).
⑴求b的值.
⑵求x1x2的值
⑶分別過M、N作直線l:y=-1的垂線,垂足分別是M1、N1,判斷△M1FN1的形狀,并證明你的結(jié)論.
⑷對(duì)于過點(diǎn)F的任意直線MN,是否存在一條定直線m,使m與以MN為直徑的圓相切.如果有,請(qǐng)法度出這條直線m的解析式;如果沒有,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)到的最近距離是、最遠(yuǎn)距離是,則此圓的半徑是________.若點(diǎn)到有切線,那么切線長(zhǎng)是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是圓的直徑,,點(diǎn)是圓上一動(dòng)點(diǎn)(與,不重合),的平分線交圓于.
判斷的形狀,并證明你的結(jié)論;
若是的內(nèi)心,當(dāng)點(diǎn)運(yùn)動(dòng)時(shí),、中是否存在長(zhǎng)度保持不變的線段?如果存在,請(qǐng)指出并求其長(zhǎng)度;如果不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行四邊形ABCD中,A(-1,0)、B(0,-2),頂點(diǎn)C、D在雙曲線(x>0)上,邊AD交y軸于點(diǎn)E,若點(diǎn)E恰好是AD的中點(diǎn),則k=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰Rt△OAB,∠AOB=90°,斜邊AB交y軸正半軸于點(diǎn)C,若A(3,1),則點(diǎn)C的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,是一塊四邊形綠地的示意圖,其中AB長(zhǎng)為24米,BC長(zhǎng)15米,CD長(zhǎng)為20米,DA長(zhǎng)7米,∠C=90°,求綠地ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市對(duì)城區(qū)部分路段的人行道地磚、綠化帶、排水管等公用設(shè)施進(jìn)行全面更新改造,根據(jù)市政建設(shè)的需要,需在35天內(nèi)完成工程.現(xiàn)有甲、乙兩個(gè)工程隊(duì)有意承包這項(xiàng)工程,經(jīng)調(diào)查知道,乙工程隊(duì)單獨(dú)完成此項(xiàng)工程的時(shí)間是甲工程隊(duì)單獨(dú)完成此項(xiàng)工程時(shí)間的2倍,若甲、乙兩工程隊(duì)合作,只需10天完成.
(1)甲、乙兩個(gè)工程隊(duì)單獨(dú)完成此項(xiàng)工程各需多少天?
(2)若甲工程隊(duì)每天的工程費(fèi)用是4萬元,乙工程隊(duì)每天的工程費(fèi)用是2.5萬元,請(qǐng)你設(shè)計(jì)一種方案,既能按時(shí)完工,又能使工程費(fèi)用最少.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com