【題目】某市對(duì)城區(qū)部分路段的人行道地磚、綠化帶、排水管等公用設(shè)施進(jìn)行全面更新改造,根據(jù)市政建設(shè)的需要,需在35天內(nèi)完成工程.現(xiàn)有甲、乙兩個(gè)工程隊(duì)有意承包這項(xiàng)工程,經(jīng)調(diào)查知道,乙工程隊(duì)單獨(dú)完成此項(xiàng)工程的時(shí)間是甲工程隊(duì)單獨(dú)完成此項(xiàng)工程時(shí)間的2倍,若甲、乙兩工程隊(duì)合作,只需10天完成.
(1)甲、乙兩個(gè)工程隊(duì)單獨(dú)完成此項(xiàng)工程各需多少天?
(2)若甲工程隊(duì)每天的工程費(fèi)用是4萬元,乙工程隊(duì)每天的工程費(fèi)用是2.5萬元,請(qǐng)你設(shè)計(jì)一種方案,既能按時(shí)完工,又能使工程費(fèi)用最少.
【答案】(1)甲工程隊(duì)單獨(dú)完成該工程需15天,則乙工程隊(duì)單獨(dú)完成該工程需30天;(2)應(yīng)該選擇甲工程隊(duì)承包該項(xiàng)工程.
【解析】
(1)設(shè)甲工程隊(duì)單獨(dú)完成該工程需x天,則乙工程隊(duì)單獨(dú)完成該工程需2x天.再根據(jù)“甲、乙兩隊(duì)合作完成工程需要10天”,列出方程解決問題;
(2)首先根據(jù)(1)中的結(jié)果,從而可知符合要求的施工方案有三種:方案一:由甲工程隊(duì)單獨(dú)完成;方案二:由乙工程隊(duì)單獨(dú)完成;方案三:由甲乙兩隊(duì)合作完成.針對(duì)每一種情況,分別計(jì)算出所需的工程費(fèi)用.
(1)設(shè)甲工程隊(duì)單獨(dú)完成該工程需天,則乙工程隊(duì)單獨(dú)完成該工程需天.
根據(jù)題意得:
方程兩邊同乘以,得
解得:
經(jīng)檢驗(yàn),是原方程的解.
∴當(dāng)時(shí),.
答:甲工程隊(duì)單獨(dú)完成該工程需15天,則乙工程隊(duì)單獨(dú)完成該工程需30天.
(2)因?yàn)榧滓覂晒こ剃?duì)均能在規(guī)定的35天內(nèi)單獨(dú)完成,所以有如下三種方案:
方案一:由甲工程隊(duì)單獨(dú)完成.所需費(fèi)用為:(萬元);
方案二:由乙工程隊(duì)單獨(dú)完成.所需費(fèi)用為:(萬元);
方案三:由甲乙兩隊(duì)合作完成.所需費(fèi)用為:(萬元).
∵∴應(yīng)該選擇甲工程隊(duì)承包該項(xiàng)工程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(12分)如圖,在矩形ABCD中,AB=12cm,BC=8cm.點(diǎn)E、F、G分別從點(diǎn)
A、B、C同時(shí)出發(fā),沿矩形的邊按逆時(shí)針方向移動(dòng),點(diǎn)E、G的速度均為2cm/s,點(diǎn)F的速
度為4cm/s,當(dāng)點(diǎn)F追上點(diǎn)G(即點(diǎn)F與點(diǎn)G重合)時(shí),三個(gè)點(diǎn)隨之停止移動(dòng).設(shè)移動(dòng)開始后
第ts時(shí),△EFG的面積為Scm2.
(1)當(dāng)t=1s時(shí),S的值是多少?
(2)寫出S與t之間的函數(shù)解析式,并指出自變量t的取值范圍;
(3)若點(diǎn)F在矩形的邊BC上移動(dòng),當(dāng)t為何值時(shí),以點(diǎn)B、E、F為頂點(diǎn)的三角形與以C、F、G為頂點(diǎn)的三角形相似?請(qǐng)說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,在銳角△ABC中,AB=5,tanC=3,BD⊥AC于點(diǎn)D,BD=3,點(diǎn)P從點(diǎn)A出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿AB向終點(diǎn)B運(yùn)動(dòng),過點(diǎn)P作PE∥AC交邊BC于點(diǎn)E,以PE為邊作Rt△PEF,使∠EPF=90°,點(diǎn)F在點(diǎn)P的下方,且EF∥AB.設(shè)△PEF與△ABD重疊部分圖形的面積為S(平方單位)(S>0),點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(秒)(t>0).
(1)求線段AC的長(zhǎng).
(2)當(dāng)△PEF與△ABD重疊部分圖形為四邊形時(shí),求S與t之間的函數(shù)關(guān)系式.
(3)若邊EF與邊AC交于點(diǎn)Q,連結(jié)PQ,如圖②.
①當(dāng)PQ將△PEF的面積分成1:2兩部分時(shí),求AP的長(zhǎng).
②直接寫出PQ的垂直平分線經(jīng)過△ABC的頂點(diǎn)時(shí)t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知銳角∠AOB如圖,(1)在射線OA上取一點(diǎn)C,以點(diǎn)O為圓心,OC長(zhǎng)為半徑作,交射線OB于點(diǎn)D,連接CD;
(2)分別以點(diǎn)C,D為圓心,CD長(zhǎng)為半徑作弧,交于點(diǎn)M,N;
(3)連接OM,MN.
根據(jù)以上作圖過程及所作圖形,下列結(jié)論中錯(cuò)誤的是( )
A. ∠COM=∠CODB. 若OM=MN,則∠AOB=20°
C. MN∥CDD. MN=3CD
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某共享單車公司提供了手機(jī)和會(huì)員卡兩種支付方式.若用手機(jī)支付方式,騎行時(shí)間在半小時(shí)以內(nèi)(含半小時(shí))不收費(fèi),超出半小時(shí)后每半小時(shí)收費(fèi)1元,若選擇會(huì)員卡支付,騎行時(shí)間每半小時(shí)收費(fèi)0.8元,設(shè)騎行時(shí)間為x小時(shí).
(1)根據(jù)題意,填寫下表(單位:元):
騎行時(shí)間(小時(shí)) | 0.5 | 2 | 3 | … |
手機(jī)支付付款金額(元) | 0 | … | ||
會(huì)員卡支付付款金額(元) | 3.2 | … |
(2)設(shè)用手機(jī)支付付款金額為y1元,用會(huì)員卡支付付款金額為y2元,分別寫出y1,y2關(guān)于x的函數(shù)關(guān)系式;
(3)若李老師經(jīng)常騎行該公司的共享單車,他應(yīng)選擇哪種支付方式比較合算?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列方程解應(yīng)用題:
某校八年級(jí)(一)班和(二)班的同學(xué),在雙休日參加修整花卉的實(shí)踐活動(dòng).已知(一)班比(二)班每小時(shí)多修整2盆花,(一)班修整66盆花所用的時(shí)間與(二)班修整60盆花所用時(shí)間相等.(一)班和(二)班的同學(xué)每小時(shí)各修整多少盆花?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知∠MAN=120°,點(diǎn)C是∠MAN的平分線AQ上的一個(gè)定點(diǎn),點(diǎn)B,D分別在AN,AM上,連接BD.
【發(fā)現(xiàn)】
(1)如圖1,若∠ABC=∠ADC=90°,則∠BCD= °,△CBD是 三角形;
【探索】
(2)如圖2,若∠ABC+∠ADC=180°,請(qǐng)判斷△CBD的形狀,并證明你的結(jié)論;
【應(yīng)用】
(3)如圖3,已知∠EOF=120°,OP平分∠EOF,且OP=1,若點(diǎn)G,H分別在射線OE,OF上,且△PGH為等邊三角形,則滿足上述條件的△PGH的個(gè)數(shù)一共有 .(只填序號(hào))
①2個(gè)②3個(gè)③4個(gè)④4個(gè)以上
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等邊三角形△ABC,直線1過點(diǎn)C且垂直AC.
(1)請(qǐng)?jiān)谥本1上作出點(diǎn)D,使得△ABD的周長(zhǎng)最。
(2)在(1)的條件下,連接AD,BD,求證,AD=2BD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】進(jìn)價(jià)為每件40元的某商品,售價(jià)為每件50元時(shí),每星期可賣出500件,市場(chǎng)調(diào)查反映:如果每件的售價(jià)每降價(jià)1元,每星期可多賣出100件,但售價(jià)不能低于每件42元,且每星期至少要銷售800件.設(shè)每件降價(jià)x元 (x為正整數(shù)),每星期的利潤(rùn)為y元.
(1)求y與x的函數(shù)關(guān)系式并寫出自變量x的取值范圍;
(2)若某星期的利潤(rùn)為5600元,此利潤(rùn)是否是該星期的最大利潤(rùn)?說明理由.
(3)直接寫出售價(jià)為多少時(shí),每星期的利潤(rùn)不低于5000元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com