【題目】已知:如圖,四邊形ABCD是平行四邊形,DE∥AC,交BC的延長(zhǎng)線于點(diǎn)E,EF⊥AB于點(diǎn)F,求證:AD=CF.
【答案】證明:∵DE∥AC,
∴∠DEC=∠ACB,∠EDC=∠DCA,
∵四邊形ABCD是平行四邊形,
∴∠CAB=∠DCA,
∴∠EDC=∠CAB,
又∵AB=CD,
∴△EDC≌△CAB,
∴CE=CB,
所以在Rt△BEF中,F(xiàn)C為其中線,
所以FC=BC,
即FC=AD.
【解析】利用平行四邊形及平行線證明△EDC≌△CAB,可得BC=CE,即FC為直角三角形的中線,由直角三角形的性質(zhì)即可得出結(jié)論.
【考點(diǎn)精析】掌握平行四邊形的性質(zhì)是解答本題的根本,需要知道平行四邊形的對(duì)邊相等且平行;平行四邊形的對(duì)角相等,鄰角互補(bǔ);平行四邊形的對(duì)角線互相平分.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校規(guī)定學(xué)生的學(xué)期數(shù)學(xué)成績(jī)滿分為100分,其中平時(shí)學(xué)習(xí)成績(jī)占30%,期末卷面成績(jī)占70%,小明的兩項(xiàng)成績(jī)(百分制)依次是80分,90分,則小明這學(xué)期的數(shù)學(xué)成績(jī)是( 。
A. 83分B. 86分C. 87分D. 92.4分
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=-x2+2x+m+1交x軸于點(diǎn)A(a,0)和B(b,0),交y軸于點(diǎn)C,拋物線的頂點(diǎn)為D,下列四個(gè)判斷:①當(dāng)x>0時(shí),y>0;②若a=-1,則b=4;③拋物線上有兩點(diǎn)P(x1,y1)和Q(x2,y2),若x1<1< x2,且x1+x2>2,則y1> y2;④點(diǎn)C關(guān)于拋物線對(duì)稱軸的對(duì)稱點(diǎn)為E,點(diǎn)G,F分別在x軸和y軸上,當(dāng)m=2時(shí),四邊形EDFG周長(zhǎng)的最小值為6.其中正確判斷的序號(hào)是( )
A. ① B. ② C. ③ D. ④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是半圓O的直徑,C、D是半圓O上的兩點(diǎn),且OD∥BC,OD與AC交于點(diǎn)E.
(1)若∠B=72°,求∠CAD的度數(shù);
(2)若AB=13,AC=12,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程x2-2x+k=0.
(1)若方程有實(shí)數(shù)根,求k的取值范圍;
(2)如果k是滿足條件的最大的整數(shù),且方程x2-2x+k=0一根的相反數(shù)是一元二次方程(m-1)x2-3mx-7=0的一個(gè)根,求m的值及這個(gè)方程的另一根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知一次函數(shù)y=﹣2x+6的圖象與x軸交于點(diǎn)A,與y軸交于點(diǎn)B.試求出△OAB的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com