【題目】如圖,點EBC的中點,ABBC,DCBC,AE平分BAD,下列結(jié)論:①AED=90°ADE=CDEDE=BEAD=AB+CD,四個結(jié)論中成立的是( 。

A. B. C. D.

【答案】A

【解析】

EEFADF,易證得RtAEFRtAEB,得到BE=EF,AB=AF,∠AEF=AEB;而點EBC的中點,得到EC=EF=BE,則可證得RtEFDRtECD,得到DC=DF,∠FDE=CDE,也可得到AD=AF+FD=AB+DC,∠AED=AEF+FED= BEC=90°,即可判斷出正確的結(jié)論.

EEFADF,如圖,

ABBC,AE平分∠BAD

RtAEFRtAEB,

BE=EFAB=AF,∠AEF=AEB;

而點EBC的中點,

EC=EF=BE,所以③錯誤;

RtEFDRtECD,

DC=DF,∠FDE=CDE,所以②正確;

AD=AF+FD=AB+DC,所以④正確;

∴∠AED=AEF+FED=BEC=90°,所以①正確.

故選:A

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠B+∠BCD=180°,∠B=∠D.

求證:∠E=∠DFE.

證明:∵∠B+∠BCD=180°( 已知 ),

∴AB∥CD (

∴∠B=_______(

又∵∠B=∠D(已知 ),

∴∠D=_______( )

∴AD∥BE(

∴∠E=∠DFE(

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知整數(shù)a0a1,a2a3,a4,,滿足下列條件:a00,a1=﹣|a0+1|a2=﹣|a1+2|,a3=﹣|a2+3|,以此類推,a2019的值是( )

A. 1009B. 1010C. 2018D. 2020

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場計劃購進A,B兩種型號的手機,已知每部A型號手機的進價比每部B型號手機進價多500元,每部A型號手機的售價是2500元,每部B型號手機的售價是2100元.

(1)若商場用50000元共購進A型號手機10部,B型號手機20部,求A、B兩種型號的手機每部進價各是多少元?

(2)為了滿足市場需求,商場決定用不超過7.5萬元采購A、B兩種型號的手機共40部,且A型號手機的數(shù)量不少于B型號手機數(shù)量的2倍.

①該商場有哪幾種進貨方式?

②該商場選擇哪種進貨方式,獲得的利潤最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖①∠1+2與∠B+C有什么關(guān)系?為什么?

2)把圖①ABC沿DE折疊,得到圖②,填空:

1+2   B+C(填”“”“),當∠A60°時,∠B+C+1+2   

3)如圖③,是由圖①的ABC沿DE折疊得到的,猜想∠BDA+CEA與∠A的關(guān)系,并證明你的猜想.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明在暑期社會實踐活動中,以每千克0.8元的價格從批發(fā)市場購進若干千克西瓜到市場上去銷售,在銷售了40千克西瓜之后,余下的每千克降價0.4元,全部售完.銷售金額與售出西瓜的千克數(shù)之間的關(guān)系如圖所示.請你根據(jù)圖象提供的信息完成以下問題:

(1)求降價前銷售金額y()與售出西瓜x(千克)之間的函數(shù)關(guān)系式.

(2)小明從批發(fā)市場共購進多少千克西瓜?

(3)小明這次賣瓜賺了多少錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某摩托車廠本周計劃每日生產(chǎn)450輛摩托車,由于工人實行輪休, 每日上班人數(shù)不一定相等,實際每日生產(chǎn)量與計劃量相比情況如下表: [增加的輛數(shù)為正數(shù),減少的輛數(shù)為負數(shù)]

星期

增減

5

+7

3

+4

+10

9

25

1)本周星期六生產(chǎn)多少輛摩托車?

2)本周總產(chǎn)量與計劃產(chǎn)量相比,是增加了還是減少了?為什么?

3)產(chǎn)量最多的那天比產(chǎn)量最少的那天多生產(chǎn)多少輛?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】品中華詩詞,尋文化基因.某校舉辦了第二屆中華詩詞大賽,將該校八年級參加競賽的學(xué)生成績統(tǒng)計后,繪制了如下不完整的頻數(shù)分布統(tǒng)計表與頻數(shù)分布直方圖.

頻數(shù)分布統(tǒng)計表

組別

成績x(分)

人數(shù)

百分比

A

60≤x<70

8

20%

B

70≤x<80

16

m%

C

80≤x<90

a

30%

D

90≤<x≤100

4

10%

請觀察圖表,解答下列問題:

(1)表中a=   ,m=   

(2)補全頻數(shù)分布直方圖;

(3)D組的4名學(xué)生中,有1名男生和3名女生.現(xiàn)從中隨機抽取2名學(xué)生參加市級競賽,則抽取的2名學(xué)生恰好是一名男生和一名女生的概率為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線交x軸于A,B兩點(點A在點B的右側(cè)),交y軸于點

C,頂點為D,對稱軸分別交x軸、AC于點E、F,點P是射線DE上一動點,過點P作AC的平行線

MN交x軸于點H,交拋物線于點M,N(點M位于對稱軸的左側(cè)).設(shè)點P的縱坐標為t..

(1)求拋物線的對稱軸及點A的坐標.

(2)當點P位于EF的中點時,求點M的坐標.

(3)① 點P在線段DE上運動時,當時,求t的值.

② 點Q是拋物線上一點,點P在整個運動過程中,滿足以點C,P,M,Q為頂點的四邊形是平行

四邊形時,則此時t的值是 (請直接寫出答案).

查看答案和解析>>

同步練習(xí)冊答案