【題目】已知:如圖,在ABC中,AC=BC,以BC為直徑的O與邊AB相交于點D,DEAC,垂足為點E.

(1)求證:點D是AB的中點;

(2)求證:DE是O的切線;

(3)若O的直徑為18,cosB=,求DE的長.

【答案】(1)見解析;(2)見解析;(3)4.

【解析】

(1)連接CD,由BC為直徑可知CD⊥AB,又BC=AC,由等腰三角形的底邊“三線合一”證明結(jié)論;

(2)連接OD,則OD為△ABC的中位線,OD∥AC,已知DE⊥AC,可證DE⊥OC,證明結(jié)論;

(3)連接CD,在Rt△BCD中,已知BC=18,cosB=,求得BD=6,則AD=BD=6,在Rt△ADE中,已知AD=6,cosA=cosB=,可求AE,利用勾股定理求DE.

(1)證明:連接CD,

BC是O的直徑,

∴CD⊥AB,又∵AC=BC,

∴AD=BD,

點D是AB的中點;

(2)證明:連接OD,

∵BD=DA,BO=OC,

DO是ABC的中位線,

∴DO∥AC,

∵DE⊥AC,

∴DE⊥DO,即DE是O的切線;

(3)∵AC=BC,

∴∠B=∠A,

∴cos∠B=cos∠A=

∵cos∠B==,BC=18,

∴BD=6,

∴AD=6,

∵cos∠A==

∴AE=2,

在RtAED中,DE==4

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠ABC和∠ACB的平分線相交于點O,過點OEFBCABE,交ACF,過點OODACD,下列四個結(jié)論:

EFBE+CF;

BOC90°+A;

O到△ABC各邊的距離相等;

設(shè)ODm,AE+AFn,則SAEFmn

其中正確的結(jié)論是(  )

A.①②③B.①②④C.②③④D.①③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明在某一次實驗中,測得兩個變量之間的關(guān)系如下表所示:

自變量x

1

2

3

4

12

因變量y

12.03

5.98

3.04

1.99

1.00

請你根據(jù)表格回答下列問題:

① 這兩個變量之間可能是怎樣的函數(shù)關(guān)系?你是怎樣作出判斷的?請你簡要說明理由。

②請你寫出這個函數(shù)的解析式。

③表格中空缺的數(shù)值可能是多少?請你給出合理的數(shù)值。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市某中學開展社會主義核心價值觀演講比賽活動,九(1)、九(2)班根據(jù)初賽成績各選出5名選手參加復賽,兩個班各選出的5名選手的復賽成績(滿分為100分)如圖所示.根據(jù)圖中數(shù)據(jù)解決下列問題:

1)根據(jù)圖示求出表中的、

平均數(shù)

中位數(shù)

眾數(shù)

九(1

85

九(2

85

100

,

2)小明同學已經(jīng)算出了九(2)班復賽成績的方差:

,請你求出九(1)班復賽成績的方差;

3)根據(jù)(1)、(2)中計算結(jié)果,分析哪個班級的復賽成績較好?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1所示的圖形,像我們常見的符號——箭號.我們不妨把這樣圖形叫做箭頭四角形

探究:

1)觀察箭頭四角形,試探究之間的關(guān)系,并說明理由;

應用:

2)請你直接利用以上結(jié)論,解決以下兩個問題:

①如圖2,把一塊三角尺放置在上,使三角尺的兩條直角邊、恰好經(jīng)過點,若,則 ;

②如圖32等分線(即角平分線)、相交于點,若

,求的度數(shù);

拓展:

3)如圖4,,分別是2020等分線(),它們的交點從上到下依次為、、.已知,則 度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在梯形ABCD中,ADBC,∠B=90°,AD=24cm,BC=26cm,動點P從點A出發(fā)沿AD方向向點D1cm/s的速度運動,動點Q從點C開始沿著CB方向向點B3cm/s的速度運動.點PQ分別從點A和點C同時出發(fā),當其中一點到達端點時,另一點隨之停止運動.

1)經(jīng)過多長時間,四邊形PQCD是平行四邊形?

2)經(jīng)過多長時間,四邊形PQBA是矩形?

3)經(jīng)過多長時間,當PQ不平行于CD時,有PQ=CD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,B、A、F三點在同一直線上,(1)AD∥BC,(2)∠B=∠C,(3)AD平分∠EAC.

請你用其中兩個作為條件,另一個作為結(jié)論,構(gòu)造一個真命題,并證明.

己知:______________________________________________________.

求證:______________________________________________________.

證明:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,為坐標原點,點和點是坐標軸上兩點,點為坐標軸上一點,若三角形的面積為,則點坐標為__________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在⊙O中,半徑OA與弦BD垂直,點C在⊙O上,∠AOB=80°

(1)若點C在優(yōu)弧BD上,求∠ACD的大;

(2)若點C在劣弧BD上,直接寫出∠ACD的大。

查看答案和解析>>

同步練習冊答案