【題目】要測量旗桿高CD , 在B處立標桿AB=2.5cm,人在F處.眼睛E、標桿頂A、旗桿頂C在一條直線上.已知BD=3.6m,FB=2.2m,EF=1.5m.求旗桿的高度.
【答案】解答:過E作EH∥FD分別交AB、CD于G、H .
因為EF∥AB∥CD , 所以EF=GB=HD .
所以AG=AB-GB=AB-EF=2.5-1.5=1m
EG=FB=2.2m,GH=BD=3.6m
CH=CD-1.5m
又因為 = ,
所以 =
所以CD=4 m,即旗桿的高4 m
【解析】過E作EH∥FD分別交AB、CD于G、H , 根據(jù)EF∥AB∥CD可求出AG、EG、GH , 再根據(jù)相似三角形的判定定理可得△EAG∽△ECH , 再根據(jù)三角形的相似比解答即可.
【考點精析】本題主要考查了相似三角形的應(yīng)用的相關(guān)知識點,需要掌握測高:測量不能到達頂部的物體的高度,通常用“在同一時刻物高與影長成比例”的原理解決;測距:測量不能到達兩點間的舉例,常構(gòu)造相似三角形求解才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在以點O為原點的平面直角坐標系中,一次函數(shù)y=﹣ x+1的圖象與x軸交于點A,與y軸交于點B,點C在直線AB上,且OC= AB,反比例函數(shù)y= 的圖象經(jīng)過點C,則所有可能的k值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明與甲、乙兩人一起玩“手心手背”的游戲.他們約定:如果三人中僅有一人出“手心”或“手背”,則這個人獲勝;如果三人都出“手心”或“手背”,則不分勝負,那么在一個回合中,如果小明出“手心”,則他獲勝的概率是多少?(請用“畫樹狀圖”或“列表”等方法寫出分析過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列四組線段中,不構(gòu)成比例線段的一組是( 。.
A.1cm,2cm,3cm,6cm
B.2cm,3cm,4cm,6cm
C.1cm, cm, cm, cm
D.1cm,2cm,3cm,4cm
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,路邊有一根電線桿AB和一塊正方形廣告牌(不用考慮牌子的厚度).有一天,小明突然發(fā)現(xiàn),在太陽光照射下,電線桿頂端A的影子剛好落在正方形廣告牌的上邊中點G處,而正方形廣告牌的影子剛好落在地面上E點,已知BC=5米,正方形邊長為2米,DE=4米.則此時電線桿的高度是( 。┟祝
A.8
B.7
C.6
D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,O為坐標系原點,A(3,0),B(3,1),C(0,1),將△OAB沿直線OB折疊,使得點A落在點D處,OD與BC交于點E,則OD所在直線的解析式為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,DE∥BC,AE:AC=1:3,EM、CN分別是∠AED、∠ACB的角平分線,EM=5,則CN=。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AD是直角三角形ABC斜邊上的中線,AE⊥AD交CB延長線于E , 則圖中一定相似的三角形是( 。
A.△AED與△ACB
B.△AEB與△ACD
C.△BAE與△ACE
D.△AEC與△DAC
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在一次全程為20km的越野賽中,甲、乙兩名選手所跑的路程y(km)與時間x(h)之間函數(shù)關(guān)系的圖象如圖中折線O﹣A﹣B﹣C和線段OD所示,兩圖象的交點為M.根據(jù)圖中提供的信息,解答下列問題:
(1)請求出圖中a的值;
(2)在乙到達終點之前,問:當x為何值時,甲、乙兩人相距2km?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com