【題目】如圖,在平面直角坐標系xOy中,O為坐標系原點,A(3,0),B(3,1),C(0,1),將△OAB沿直線OB折疊,使得點A落在點D處,OD與BC交于點E,則OD所在直線的解析式為( 。
A. B. C. D.
【答案】C
【解析】
根據(jù)矩形的性質結合折疊的性質可得出∠EOB=∠EBO,進而可得出OE=BE,設點E的坐標為(m,1),則OE=BE=3-m,CE=m,利用勾股定理即可求出m值,再根據(jù)點E的坐標,利用待定系數(shù)法即可求出OD所在直線的解析式.
∵A(3,0),B(3,1),C(0,1),O(0,0),
∴四邊形OABC為矩形,
∴∠EBO=∠AOB.
又∵∠EOB=∠AOB,
∴∠EOB=∠EBO,
∴OE=BE,
設點E的坐標為(m,1),則OE=BE=3-m,CE=m,
在Rt△OCE中,OC=1,CE=m,OE=3-m,
∴(3-m)2=12+m2,
∴m=,
∴點E的坐標為(,1),
設OD所在直線的解析式為y=kx,
將點E(,1)代入y=kx中,
得1=k,解得:k=,
∴OD所在直線的解析式為y=x.
故選:C.
科目:初中數(shù)學 來源: 題型:
【題目】水果店王阿姨到水果批發(fā)市場打算購進一種水果銷售,經過還價,實際價格每千克比原來少2元,發(fā)現(xiàn)原來買這種水果80千克的錢,現(xiàn)在可買88千克.
(1)現(xiàn)在實際購進這種水果每千克多少元?
(2)王阿姨準備購進這種水果銷售,若這種水果的銷售量y(千克)與銷售單價x(元/千克)滿足如圖所示的一次函數(shù)關系. ①求y與x之間的函數(shù)關系式;
②請你幫王阿姨拿個主意,將這種水果的銷售單價定為多少時,能獲得最大利潤?最大利潤是多少?(利潤=銷售收入﹣進貨金額)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,菱形ABCD中,∠A=60°,點P從A出發(fā),以2cm/s的速度沿邊AB、BC、CD勻速運動到D終止,點Q從A與P同時出發(fā),沿邊AD勻速運動到D終止,設點P運動的時間為t(s).△APQ的面積S(cm2)與t(s)之間函數(shù)關系的圖象由圖2中的曲線段OE與線段EF、FG給出.
(1)求點Q運動的速度;
(2)求圖2中線段FG的函數(shù)關系式;
(3)問:是否存在這樣的t,使PQ將菱形ABCD的面積恰好分成1:5的兩部分?若存在,求出這樣的t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個鋼筋三角形框架三邊長分別為20厘米,50厘米、60厘米,現(xiàn)要再做一個與其相似的鋼筋三角形框架,而只有長是30厘米和50厘米的兩根鋼筋,要求以其中一根為邊,從另一根上截下兩段(允許有余料)作為兩邊,則不同的截法有( ).
A.一種
B.二種
C.三種
D.四種
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】要測量旗桿高CD , 在B處立標桿AB=2.5cm,人在F處.眼睛E、標桿頂A、旗桿頂C在一條直線上.已知BD=3.6m,FB=2.2m,EF=1.5m.求旗桿的高度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點M是直線y=2x+3上的動點,過點M作MN垂直于x軸于點N,y軸上是否存在點P,使得△MNP為等腰直角三角形,則符合條件的點P有(提示:直角三角形斜邊上的中線等于斜邊的一半)( )
A. 2個 B. 3個 C. 4個 D. 5個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某中學為使高一新生入校后及時穿上合身的校服,現(xiàn)提前對某校九年級三班學生即將所穿校服型號情況進行了摸底調查,并根據(jù)調查結果繪制了如圖兩個不完整的統(tǒng)計圖(校服型號以身高作為標準,共分為6個型號):
根據(jù)以上信息,解答下列問題:
(1)該班共有 名學生;
(2)補全條形統(tǒng)計圖;
(3)該班學生所穿校服型號的眾數(shù)為 ,中位數(shù)為 ;
(4)如果該校預計招收新生1500名,根據(jù)樣本數(shù)據(jù),估計新生穿170型校服的學生大約有多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將邊長為2cm的正方形ABCD沿其對角線AC剪開,再把△ABC沿著AD方向平移,得到△A′B′C′,若兩個三角形重疊部分的面積為1cm2 , 則它移動的距離AA′等于( 。
A.0.5cm
B.1cm
C.1.5cm
D.2cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料:
根據(jù)聯(lián)合國《人口老齡化及其社會經濟后果》中提到的標準,當一個國家或地區(qū)65 歲及以上老年人口數(shù)量占總人口比例超過7%時,意味著這個國家或地區(qū)進入老齡化.從經濟角度,一般可用“老年人口撫養(yǎng)比”來反映人口老齡化社會的后果.所謂“老年人口撫養(yǎng)比”是指某范圍人口中,老年人口數(shù)(65 歲及以上人口數(shù))與勞動年齡人口數(shù)(15﹣64 歲人口數(shù))之比,通常用百分比表示,用以表明每100 名勞動年齡人口要負擔多少名老年人.
以下是根據(jù)我國近幾年的人口相關數(shù)據(jù)制作的統(tǒng)計圖和統(tǒng)計表.
2011﹣2014 年全國人口年齡分布圖
2011﹣2014 年全國人口年齡分布表
2011年 | 2012年 | 2013年 | 2014年 | |
0﹣14歲人口占總人口的百分比 | 16.4% | 16.5% | 16.4% | 16.5% |
15﹣64歲人口占總人口的百分比 | 74.5% | 74.1% | 73.9% | 73.5% |
65歲及以上人口占總人口的百分比 | m | 9.4% | 9.7% | 10.0% |
根據(jù)以上材料解答下列問題:
(1)2011 年末,我國總人口約為億,全國人口年齡分布表中m的值為;
(2)若按目前我國的人口自然增長率推測,到2027 年末我國約有14.60 億人.假設0﹣14歲人口占總人口的百分比一直穩(wěn)定在16.5%,15﹣64歲人口一直穩(wěn)定在10 億,那么2027 年末我國0﹣14歲人口約為億,“老年人口撫養(yǎng)比”約為;(精確到1%)
(3)2016 年1 月1 日起我國開始實施“全面二胎”政策,一對夫妻可生育兩個孩子,在未來10年內,假設出生率顯著提高,這(填“會”或“不會”)對我國的“老年人口撫養(yǎng)比”產生影響.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com