【題目】目前微信”、“支付寶”、“共享單車網(wǎng)購給我們的生活帶來了很多便利,初二數(shù)學小組在校內(nèi)對你最認可的四大新生事物進行調(diào)查,隨機調(diào)查了m人(每名學生必選一種且只能從這四種中選擇一種)并將調(diào)查結(jié)果繪制成如下不完整的統(tǒng)計圖.

(1)根據(jù)圖中信息求出m=   ,n=   ;

(2)請你幫助他們將這兩個統(tǒng)計圖補全;

(3)根據(jù)抽樣調(diào)查的結(jié)果,請估算全校2000名學生中,大約有多少人最認可微信這一新生事物?

(4)已知A、B兩位同學都最認可微信”,C同學最認可支付寶”D同學最認可網(wǎng)購從這四名同學中抽取兩名同學,請你通過樹狀圖或表格,求出這兩位同學最認可的新生事物不一樣的概率.

【答案】(1)100、35;(2)補圖見解析;(3)800人;(4)

【解析】1)由共享單車人數(shù)及其百分比求得總?cè)藬?shù)m,用支付寶人數(shù)除以總?cè)藬?shù)可得其百分比n的值;

(2)總?cè)藬?shù)乘以網(wǎng)購人數(shù)的百分比可得其人數(shù),用微信人數(shù)除以總?cè)藬?shù)求得其百分比即可補全兩個圖形;

(3)總?cè)藬?shù)乘以樣本中微信人數(shù)所占百分比可得答案;

(4)列表得出所有等可能結(jié)果,從中找到這兩位同學最認可的新生事物不一樣的結(jié)果數(shù),根據(jù)概率公式計算可得.

1)∵被調(diào)查的總?cè)藬?shù)m=10÷10%=100人,

∴支付寶的人數(shù)所占百分比n%=×100%=35%,即n=35,

(2)網(wǎng)購人數(shù)為100×15%=15人,微信對應的百分比為×100%=40%,

補全圖形如下:

(3)估算全校2000名學生中,最認可微信這一新生事物的人數(shù)為2000×40%=800人;

(4)列表如下:

共有12種情況,這兩位同學最認可的新生事物不一樣的有10種,

所以這兩位同學最認可的新生事物不一樣的概率為

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC,D是BC上任意一點,過D分別向AB,AC引垂線,垂足分別為E,F(xiàn),CG是AB邊上的高.

(1)當D點在BC的什么位置時,DE=DF?請說明理由.

(2)DE,DF,CG的長之間存在著怎樣的等量關系?并說明理由.

(3)若D在底邊BC的延長線上,(2)中的結(jié)論還成立嗎?若不成立,又存在怎樣的關系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在RtABC中,∠ABC=90° ,∠ACB=30° ,AD平分∠BAC BD= ,點P為線段AC上的一個動點

(1)AC的長

(2)作△ABC中∠ACB的角平分線CH,求BH的長

(3)若點E在直線1上,且在C點的左側(cè),PE=PC, AP為多少時,△ACE為等腰三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校九年級開展征文活動,征文主題只能從愛國”“敬業(yè)”“誠信”“友善四個主題選擇一個,九年級每名學生按要求都上交了一份征文,學校為了解選擇各種征文主題的學生人數(shù),隨機抽取了部分征文進行了調(diào)查,根據(jù)調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.

(1)求共抽取了多少名學生的征文;

(2)將上面的條形統(tǒng)計圖補充完整;

(3)在扇形統(tǒng)計圖中,選擇愛國主題所對應的圓心角是多少;

(4)如果該校九年級共有1200名學生,請估計選擇以友善為主題的九年級學生有多少名.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,∠A∶∠B∶∠C=3510,又MNC≌△ABC,則∠BCM∶∠BCN等于(

A. 12 B. 13 C. 23 D. 14

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】設a,b是任意兩個不等實數(shù),我們規(guī)定:滿足不等式a≤x≤b的實數(shù)x的所有取值的全體叫做閉區(qū)間,表示為[a,b].對于一個函數(shù),如果它的自變量x與函數(shù)值y滿足:當m≤x≤n時,有m≤y≤n,我們就稱此函數(shù)是閉區(qū)間[m,n]上的“閉函數(shù)”.如函數(shù)y=﹣x+4,當x=1時,y=3;當x=3時,y=1,即當1≤x≤3時,恒有1≤y≤3,所以說函數(shù)y=﹣x+4是閉區(qū)間[1,3]上的“閉函數(shù)”,同理函數(shù)y=x也是閉區(qū)間[1,3]上的“閉函數(shù)”.

(1)反比例函數(shù)y=是閉區(qū)間[1,2018]上的“閉函數(shù)”嗎?請判斷并說明理由;

(2)如果已知二次函數(shù)y=x2﹣4x+k是閉區(qū)間[2,t]上的“閉函數(shù)”,求k和t的值;

3)如果(2)所述的二次函數(shù)的圖象交y軸于C點,A為此二次函數(shù)圖象的頂點,B為直線x=1上的一點,當ABC為直角三角形時,寫出點B的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,網(wǎng)格中有格點△ABC與△DEF

1)△ABC與△DEF是否全等?(不說理由.)

2)△ABC與△DEF是否成軸對稱?(不說理由.)

3)若△ABC與△DEF成軸對稱,請畫出它的對稱軸l.并在直線l上畫出點P,使PA+PC最。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABC中,AB=AC,∠A=36°AC的垂直平分線交ABE,D為垂足,連結(jié)EC

1)求∠ECD的度數(shù).

2)若CE=9,求BC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】小明學習電學知識后,用四個開關按鍵(每個開關按鍵閉合的可能性相等)、一個電源和一個燈泡設計了一個電路圖

(1)若小明設計的電路圖如圖1(四個開關按鍵都處于打開狀態(tài))如圖所示,求任意閉合一個開關按鍵,燈泡能發(fā)光的概率;

(2)若小明設計的電路圖如圖2(四個開關按鍵都處于打開狀態(tài))如圖所示,求同時時閉合其中的兩個開關按鍵,燈泡能發(fā)光的概率.(用列表或樹狀圖法)

查看答案和解析>>

同步練習冊答案