【題目】如圖,AD為⊙O的直徑,作⊙O的內(nèi)接正三角形ABC,甲、乙兩人的作法分別是: 甲:①、作OD的中垂線,交⊙O于B,C兩點,
②、連接AB,AC,△ABC即為所求的三角形
乙:①、以D為圓心,OD長為半徑作圓弧,交⊙O于B,C兩點.
②、連接AB,BC,CA.△ABC即為所求的三角形.
對于甲、乙兩人的作法,可判斷( )
A.甲、乙均正確
B.甲、乙均錯誤
C.甲正確、乙錯誤
D.甲錯誤,乙正確
【答案】A
【解析】解:根據(jù)甲的思路,作出圖形如下:
連接OB,
∵BC垂直平分OD,
∴E為OD的中點,且OD⊥BC,
∴OE=DE= OD,又OB=OD,
在Rt△OBE中,OE= OB,
∴∠OBE=30°,又∠OEB=90°,
∴∠BOE=60°,
∵OA=OB,∴∠OAB=∠OBA,
又∠BOE為△AOB的外角,
∴∠OAB=∠OBA=30°,
∴∠ABC=∠ABO+∠OBE=60°,
同理∠C=60°,
∴∠BAC=60°,
∴∠ABC=∠BAC=∠C,
∴△ABC為等邊三角形,
故甲作法正確;
根據(jù)乙的思路,作圖如下:
連接OB,BD,
∵OD=BD,OD=OB,
∴OD=BD=OB,
∴△BOD為等邊三角形,
∴∠OBD=∠BOD=60°,
又BC垂直平分OD,∴OM=DM,
∴BM為∠OBD的平分線,
∴∠OBM=∠DBM=30°,
又OA=OB,且∠BOD為△AOB的外角,
∴∠BAO=∠ABO=30°,
∴∠ABC=∠ABO+∠OBM=60°,
同理∠ACB=60°,
∴∠BAC=60°,
∴∠ABC=∠ACB=∠BAC,
∴△ABC為等邊三角形,
故乙作法正確,
故選A
【考點精析】解答此題的關(guān)鍵在于理解含30度角的直角三角形的相關(guān)知識,掌握在直角三角形中,如果一個銳角等于30°,那么它所對的直角邊等于斜邊的一半,以及對垂徑定理的理解,了解垂徑定理:平分弦(不是直徑)的直徑垂直于弦,并且平分弦所對的兩條弧.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“美麗廣西,清潔鄉(xiāng)村”活動中,李家村村長提出了兩種購買垃圾桶方案;方案1:買分類垃圾桶,需要費用3000元,以后每月的垃圾處理費用250元;方案2:買不分類垃圾桶,需要費用1000元,以后每月的垃圾處理費用500元;設(shè)方案1的購買費和每月垃圾處理費共為y1元,交費時間為x個月;方案2的購買費和每月垃圾處理費共為y2元,交費時間為x個月.
(1)直接寫出y1、y2與x的函數(shù)關(guān)系式;
(2)在同一坐標系內(nèi),畫出函數(shù)y1、y2的圖象;
(3)在垃圾桶使用壽命相同的情況下,哪種方案省錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,MN是一條東西朝向的筆直的公路,C是位于該公路上的一個檢測點輛長為9m的小貨車BD行駛在該公路上小王位于點A處觀察小貨車,某時刻他發(fā)現(xiàn)車頭D、車尾B及檢測點C分別距離他10m、17m,2m
(1)過點A向MN引垂線,垂足為E,請利用勾股定理分別找出線段AE與DE、AE與BE之間所滿足的數(shù)量關(guān)系;
(2)在上一問的提示下,繼續(xù)完成下列問題:
①求線段DE的長度;
②該小貨車的車頭D距離檢測點C還有多少m?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,D是邊AB上一點,且∠A=2∠DCB.E是BC邊上的一點,以EC為直徑的⊙O經(jīng)過點D.
(1)求證:AB是⊙O的切線;
(2)若CD的弦心距為1,BE=EO,求BD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某地為提倡節(jié)約用水,準備實行自來水“階梯計費”方式,用戶用水不超出基本用水量的部分享受基本價格,超出基本用水量的部分實行加價收費,為更好地決策,自來水公司隨機抽取部分用戶的用水量數(shù)據(jù),并繪制了如下不完整統(tǒng)計圖(每組數(shù)據(jù)包括右端點但不包括左端點),請你根據(jù)統(tǒng)計圖解決下列問題:
(1)此次調(diào)查抽取了多少用戶的用水量數(shù)據(jù)?
(2)補全頻數(shù)分布直方圖,求扇形統(tǒng)計圖中“25噸~30噸”部分的圓心角度數(shù);
(3)如果自來水公司將基本用水量定為每戶25噸,那么該地20萬用戶中約有多少用戶的用水全部享受基本價格?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形OABC的兩條邊在坐標軸上,OA=1,OC=2,現(xiàn)將此矩形向右平移,每次平移1個單位,若第1次平移得到的矩形的邊與反比例函數(shù)圖象有兩個交點,它們的縱坐標之差的絕對值為0.6,則第n次(n>1)平移得到的矩形的邊與該反比例函數(shù)圖象的兩個交點的縱坐標之差的絕對值為(用含n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下圖可以近似地刻畫下列哪個情景( )
A. 小明勻速步行上學(xué)時離學(xué)校的距離與時間的關(guān)系
B. 勻速行駛的汽車的速度與時間的關(guān)系
C. 小亮媽媽到超市購買蘋果的總費用與蘋果質(zhì)量的關(guān)系
D. 一個勻速上升的氣球的高度與時間的關(guān)系
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知x1、x2是方程x2﹣5x﹣6=0的兩個根,則代數(shù)式x12+x22的值是( )
A.37
B.26
C.13
D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,△ABC中,∠ACB=90°,AC=3,BC=3,如圖②,將△ABC沿一條直線折疊,使得點A與點C重合
(1)在圖①中畫出折痕所在的直線l,設(shè)直線l與AB,AC分別相交于點D,E(尺規(guī)作圖,不寫作法,保留作圖痕跡)
(2)如圖②,求△CDB的周長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com