【題目】某廠家接到一批特殊產(chǎn)品的生產(chǎn)訂單,客戶要求在兩周內(nèi)完成生產(chǎn),并商定這批產(chǎn)品的出廠價為每個16元.受市場影響,制造這批產(chǎn)品的某種原材料成本價持續(xù)上漲,設第x天(1≤x≤14,且x為整數(shù))每個產(chǎn)品的成本為m元,m與x之間的函數(shù)關系為m=x+8.訂單完成后,經(jīng)統(tǒng)計發(fā)現(xiàn)工人王師傅第x天生產(chǎn)的產(chǎn)品個數(shù)y與x滿足如圖所示的函數(shù)關系:
(1)寫出y與x之間的函數(shù)關系式及自變量x的取值范圍;
(2)設王師傅第x天創(chuàng)造的產(chǎn)品利潤為W元,問王師傅第幾天創(chuàng)造的利潤最大?最大利潤是多少元?
【答案】(1)且x為正整數(shù);(2)王師傅第天創(chuàng)造的利潤最大,最大利潤是元
【解析】
(1)首先觀察題中的函數(shù)圖像可知其為一個分段函數(shù),由此分別表示出時與時兩個范圍內(nèi)的函數(shù)關系式,并且其中x為正整數(shù),由此進一步即可得出答案;
(2)根據(jù)題意分當且x為正整數(shù)時或當且x為正整數(shù)時兩種情況進一步分析比較即可.
(1)由題意可得,,
∴當且x為正整數(shù)時,y與x之間的函數(shù)關系式為:,
當且x為正整數(shù)時,y與x之間的函數(shù)關系式為:,
綜上所述,y與x之間的函數(shù)關系式為:且x為正整數(shù);
(2)①當且x為正整數(shù)時,
,
∵,,
∴當時,,
②當時,且為正整數(shù)時,
,
∵,
∴隨的增大而減小,
∴當時,
∵,
∴王師傅第天創(chuàng)造的利潤最大,最大利潤是元,
答:王師傅第天創(chuàng)造的利潤最大,最大利潤是元.
科目:初中數(shù)學 來源: 題型:
【題目】隨著新冠肺炎的爆發(fā),市場對口罩的需求量急劇增大.某口罩生產(chǎn)商自二月份以來,--直積極恢復產(chǎn)能,每日口罩生產(chǎn)量(百萬個)與天數(shù)且為整數(shù))的函數(shù)關系圖象如圖所示,而該生產(chǎn)商對口供應市場對口罩的需求量<(百萬個)與天數(shù)呈拋物線型,第天市場口罩缺口(需求量與供應量差)就達到(百萬個),之后若干天,市場口罩需求量不斷上升,在第天需求量達到最高峰(百萬個).
求出與的函數(shù)解析式;
當市場供應量不小于需求量時,市民買口罩才無需提前預約,那么在整個二月份,市民無需預約即可購買口罩的天數(shù)共有多少天?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ACB中,∠ACB=90°,AC=2BC=4,點P為AB邊中點,點E為AC邊上不與端點重合的一動點,將△ADP沿著直線PD折疊得△PDE,若DE⊥AB,則AD的長度為_____ .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經(jīng)過點(﹣1,0),與y軸交于(0,2),拋物線的對稱軸為直線x=1,則下列結論中:①a+c=b;②方程ax2+bx+c=0的解為﹣1和3;③2a+b=0;④c﹣a>2,其中正確的結論有( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,經(jīng)過點B(1,0)的拋物線與y軸交于點C,其頂點為點G,過點C作y軸的垂線交拋物線對稱軸于點D,線段CO上有一動點M,連接DM、DG.
(1)求拋物線的表達式;
(2)求的最小值以及相應的點M的坐標;
(3)如圖2,在(2)的條件下,以點A(﹣2,0)為圓心,以AM長為半徑作圓交x軸正半軸于點E.在y軸正半軸上有一動點P,直線PF與⊙A相切于點F,連接EF交y軸于點N,當PF∥BM時,求PN的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB=4,C為射線BA上一動點,以BC為邊向上作正三角形BCD,⊙O過A、C、D三點,E為⊙O上一點,滿足AD=ED,直線CE交直線AD于F.
(1)求證:CE∥BD;
(2)設CF=a,若C在線段AB上運動.
①求點E運動的路徑長;
②求a的范圍;
(3)若AC=1,求 tan∠DEC.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線交軸于、兩點,交軸于點,連接.
(1)求拋物線的解析式;
(2)點是拋物線上一點,設點的橫坐標為.
①當點在第一象限時,過點作軸,交于點,過點作軸,垂足為,連接,當和相似時,求點的坐標;
②請直接寫出使的點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為了解七、八年級學生對“防溺水”安全知識的掌握情況,從七、八年級各隨機抽取50名學生進行測試,并對成績(百分制)進行整理、描述和分析.部分信息如下:
a.七年級成績頻數(shù)分布直方圖:
b.七年級成績在這一組的是:70 72 74 75 76 76 77 77 77 78 79
c.七、八年級成績的平均數(shù)、中位數(shù)如下:
年級 | 平均數(shù) | 中位數(shù) |
七 | 76.9 | m |
八 | 79.2 | 79.5 |
根據(jù)以上信息,回答下列問題:
(1)在這次測試中,七年級在80分以上(含80分)的有 人;
(2)表中m的值為 ;
(3)在這次測試中,七年級學生甲與八年級學生乙的成績都是78分,請判斷兩位學生在各自年級的排名誰更靠前,并說明理由;
(4)該校七年級學生有400人,假設全部參加此次測試,請估計七年級成績超過平均數(shù)76.9分的人數(shù).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com