【題目】如圖所示,幸福小區(qū)C位于快遞站點(diǎn)B的北偏東35°方向,沁苑小區(qū)D位于B的南偏東55°方向,無人機(jī)以1千米/分鐘的速度配送快遞時(shí),從BC需飛行8分鐘,從BD需飛行15分鐘.若無人機(jī)的配送路線是B→C→D→B請(qǐng)求出配送途中飛行所需時(shí)間.

【答案】40分鐘

【解析】

首先得到∠CBD是直角,然后利用勾股定理求得斜邊CD的長,從而求得所有路程行駛時(shí)間.

解:∵幸福小區(qū)C位于快遞站點(diǎn)B的北偏東35°方向,沁苑小區(qū)D位于B的南偏東55°方向,

∴∠ABC35°,∠EBD55°

∴∠CBA=180-35°-55°=90°,

∵無人機(jī)以1千米/分鐘的速度配送快遞時(shí),從BC需飛行8分鐘,從BD需飛行15分鐘,

BC8km,BD15km,

∴由勾股定理得:

∴從C飛到D需要17分鐘,

∴沿B→C→D→B路線配送途中飛行所需時(shí)間是8+15+1740分鐘.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖 1,已知拋物線 L1:y=﹣x2+2x+3 x 軸交于 A,B 兩點(diǎn)點(diǎn) A在點(diǎn) B 的左側(cè),與 y 軸交于點(diǎn) C,在 L1 上任取一點(diǎn) P,過點(diǎn) P 作直線 l⊥x 軸, 垂足為D,將 L1 沿直線 l 翻折得到拋物線L2,交 x 軸于點(diǎn) M,N(點(diǎn) M 在點(diǎn) N 的左側(cè)).

(1)當(dāng) L1 L2 重合時(shí),求點(diǎn) P 的坐標(biāo);

(2)當(dāng)點(diǎn) P 與點(diǎn) B 重合時(shí),求此時(shí) L2 的解析式;并直接寫出 L1 與 L2 中,y 均隨x 的增大而減小時(shí)的 x 的取值范圍;

(3)連接 PM,PB,設(shè)點(diǎn) P(m,n),當(dāng) n=m 時(shí),求△PMB 的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD中,BE平分∠DBC且交CD邊于點(diǎn)E,將△BCE繞點(diǎn)C順時(shí)針旋轉(zhuǎn)到△DCF的位置,并延長BE交DF于點(diǎn)G.

(1)求證:△BDG∽△DEG;

(2)若EGBG=4,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是☉O的直徑,DC是☉O的切線,點(diǎn)C是切點(diǎn),ADDC,垂足為D,且與圓O相交于點(diǎn)E.

(1)求證:DAC=BAC.

(2)若☉O的直徑為5cm,EC=3cm,AC的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 閱讀下面的材料,解答后面的問題

材料:“解方程x4-3x2+2=0”

解:設(shè)x2=y,原方程變?yōu)?/span>y2-3y+2=0,(y-1)(y-2=0,得y=1y=2

當(dāng)y=1時(shí),即x2=1,解得x=±1;

當(dāng)y=2時(shí),即x2=2,解得x=±

綜上所述,原方程的解為x1=1,x2=-1,x3=x4=-

問題:(1)上述解答過程采用的數(shù)學(xué)思想方法是______

A.加減消元法 B.代入消元法 C.換元法 D.待定系數(shù)法

2)采用類似的方法解方程:(x2-2x2-x2+2x-6=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是根據(jù)對(duì)某區(qū)初中三個(gè)年級(jí)學(xué)生課外閱讀的漫畫叢書”、“科普常識(shí)”、“名人傳記”、“其它中,最喜歡閱讀的一種讀物進(jìn)行隨機(jī)抽樣調(diào)查,并繪制了下面不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖(每人必選一種讀物,并且只能選一種),根據(jù)提供的信息,解答下列問題:

(1)求該區(qū)抽樣調(diào)查人數(shù);

(2)補(bǔ)全條形統(tǒng)計(jì)圖,并求出最喜歡其它讀物的人數(shù)在扇形統(tǒng)計(jì)圖中所占的圓心角度數(shù);

(3)若該區(qū)有初中生14400人,估計(jì)該區(qū)有初中生最喜歡讀名人傳記的學(xué)生是多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=﹣x2﹣2axx軸相交于O、A兩點(diǎn),OA=4,點(diǎn)D為拋物線的頂點(diǎn),并且直線y=kx+b與該拋物線相交于A、B兩點(diǎn),與y軸相交于點(diǎn)C,B點(diǎn)的橫坐標(biāo)是﹣1.

(1)求k,a,b的值;

(2)若P是直線AB上方拋物線上的一點(diǎn),設(shè)P點(diǎn)的橫坐標(biāo)是t,PAB的面積是S,求S關(guān)于t的函數(shù)關(guān)系式,并直接寫出自變量t的取值范圍;

(3)在(2)的條件下,當(dāng)PBCD時(shí),點(diǎn)Q是直線AB上一點(diǎn),若∠BPQ+CBO=180°,求Q點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知中,厘米,厘米,點(diǎn)的中點(diǎn).

1)如果點(diǎn)P在線段BC上以3厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動(dòng).

①若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,經(jīng)過1秒后,是否全等,請(qǐng)說明理由;

②若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度不相等, 是否可能全等?若能,求出全等時(shí)點(diǎn)Q的運(yùn)動(dòng)速度和時(shí)間;若不能,請(qǐng)說明理由.

2)若點(diǎn)Q以②中的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來的運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿三邊運(yùn)動(dòng),求經(jīng)過多長時(shí)間點(diǎn)P與點(diǎn)Q第一次在的哪條邊上相遇?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某地區(qū)遭受嚴(yán)重的自然災(zāi)害,空軍某部隊(duì)奉命趕災(zāi)區(qū)空投物資,已知空投物資離開飛機(jī)后在空中沿拋物線降落,拋物線頂點(diǎn)為機(jī)艙航口,如圖所示,如果空投物資離開處后下落的垂直高度米時(shí),它測處的水平距離米,那么要使飛機(jī)在垂直高度米的高空進(jìn)行空投,物資恰好準(zhǔn)確地落在居民點(diǎn)處,飛機(jī)到處的水平距離應(yīng)為________米.

查看答案和解析>>

同步練習(xí)冊(cè)答案