【題目】點(diǎn)P是正方形ABCD邊AB上一點(diǎn)(不與A,B重合),連接PD并將線段PD繞點(diǎn)P順時(shí)針旋轉(zhuǎn)90°,得到線段PE,連接BE,則∠CBE等于 .
【答案】45°
【解析】
試題在AD上取一點(diǎn)F,使DF=BP,連接PF,由正方形的性質(zhì)就可以得出△DFP≌△PBE,就可以得出∠DFP=∠PBE,根據(jù)AP=AF就可以得出∠DFP的值,就可以求出∠CBE的值.
解:在AD上取一點(diǎn)F,使DF=BP,連接PF,
∵四邊形ABCD是正方形,
∴AD=AB,∠A=∠ABC=90°.
∴AD﹣DF=AB﹣BP,∠ADP+∠APD=90°,
∴AF=AP.
∴∠AFP=∠APF=45°,
∴∠DFP=135°.
∵∠DPE=90°
∴∠APD+∠BPE=90°.
∴∠ADP=∠BPE.
在△DFP和△PBE中,
,
∴△DFP≌△PBE(SAS),
∴∠DFP=∠PBE,
∴∠PBE=135°,
∴∠EBC=135°﹣90°=45°.
故答案為:45°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】張老師給愛好學(xué)習(xí)的的小軍和小俊提出這樣一個(gè)問題:如圖(1),在△ABC中,AB=AC,點(diǎn)P為邊BC上的任一點(diǎn),過點(diǎn)P作PD⊥AB,PE⊥AC,垂足分別為D,E,過點(diǎn)C作CF⊥AB,垂足為F.求證:PD+PE=CF.
小軍的證明思路是:如圖(2),連接AP,由△ABP與△ACP面積之和等于△ABC的面積可以證得:PD+PE=CF.
老師表揚(yáng)了小軍,并且告訴小軍和小。涸谇蠼馄矫鎺缀螁栴}的時(shí)候,根據(jù)有關(guān)幾何量與涉及的有關(guān)圖形面積之間的內(nèi)在聯(lián)系,用面積或面積之間的關(guān)系表示有關(guān)線段間的關(guān)系,從而把要論證的線段之間的關(guān)系轉(zhuǎn)化為面積的關(guān)系,并通過圖形面積的等積變換對(duì)所論問題來進(jìn)行求解的方法,這種方法稱為“面積法”.
請你使用“面積法”解決下列問題:
(1)Rt△ABC兩條直角邊長為3和4,則它的內(nèi)切圓半徑為 ;
(2)如圖(3),△ABC中AB=15,BC=14,AC=13,AD是BC邊上的高.求AD長及△ABC的內(nèi)切圓的半徑;
(3)如圖(4),在四邊形ABCD中,⊙O1與⊙O2分別為△ABD與△BCD的內(nèi)切圓,⊙O1與△ABD切點(diǎn)分別為E、F、G,設(shè)它們的半徑分別為r1和r2,若∠ADB=90°,AE=8,BC+CD=20,S△DBC=36,r2=2,求r1的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把球放在長方體紙盒內(nèi),球的一部分露出盒外,其主視圖如圖.⊙O與矩形ABCD的邊BC,AD分別相切和相交(E,F(xiàn)是交點(diǎn)),已知EF=CD=8,則⊙O的半徑為
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖所示.在△ABC中,∠B=90°,AB=5cm,BC=7cm.點(diǎn)P從點(diǎn)A開始沿AB邊向點(diǎn)B以1cm/s的速度移動(dòng),點(diǎn)Q從點(diǎn)B開始沿BC邊向點(diǎn)C以2cm/s的速度移動(dòng),當(dāng)其中一點(diǎn)達(dá)到終點(diǎn)后,另外一點(diǎn)也隨之停止運(yùn)動(dòng).
(1)如果P,Q分別從A,B同時(shí)出發(fā),那么幾秒后,△PBQ的面積等于4cm2?
(2)如果P,Q分別從A,B同時(shí)出發(fā),那么幾秒后,PQ的長度等于5cm?
(3)在(1)中,△PQB的面積能否等于7cm2?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題情境:如圖1,在正方形ABCD中,E為邊BC上一點(diǎn)(不與點(diǎn)B、C重合),垂直于AE的一條直線MN分別交AB、AE、CD于點(diǎn)M、P、N.判斷線段DN、MB、EC之間的數(shù)量關(guān)系,并說明理由.
問題探究:在“問題情境”的基礎(chǔ)上,
(1)如圖2,若垂足P恰好為AE的中點(diǎn),連接BD,交MN于點(diǎn)Q,連接EQ,并延長交邊AD于點(diǎn)F.求∠AEF的度數(shù);
(2)如圖3,當(dāng)垂足P在正方形ABCD的對(duì)角線BD上時(shí),連接AN,將△APN沿著AN翻折,點(diǎn)P落在點(diǎn)P'處.若正方形ABCD的邊長為4 ,AD的中點(diǎn)為S,求P'S的最小值.
問題拓展:如圖4,在邊長為4的正方形ABCD中,點(diǎn)M、N分別為邊AB、CD上的點(diǎn),將正方形ABCD沿著MN翻折,使得BC的對(duì)應(yīng)邊B'C'恰好經(jīng)過點(diǎn)A,C'N交AD于點(diǎn)F.分別過點(diǎn)A、F作AG⊥MN,FH⊥MN,垂足分別為G、H.若AG=,請直接寫出FH的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A(1,2)在反比例函數(shù)上,B為反比例函數(shù)圖象上一點(diǎn),不與A重合,當(dāng)以OB為直徑的圓經(jīng)過A點(diǎn),點(diǎn)B的坐標(biāo)為___________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列圖形都是由同樣大小的菱形按照一定規(guī)律組成的,請根據(jù)排列規(guī)律完成下列問題:
(1)填寫下表:
圖形序號(hào) | 菱形個(gè)數(shù)個(gè) |
| 3 |
| 7 |
| ______ |
| ______ |
|
|
(2)根據(jù)表中規(guī)律猜想,圖n中菱形的個(gè)數(shù)用含n的式子表示,不用說理;
(3)是否存在一個(gè)圖形恰好由91個(gè)菱形組成?若存在,求出圖形的序號(hào);若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,∠C=90°,AC=BC=2,將△ABC繞點(diǎn)A順時(shí)針方向旋轉(zhuǎn)60°到△AB′C′的位置,連接C′B,則C′B的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,平行四邊形ACDE的一邊在直徑AB上,點(diǎn)E在⊙O上.
(1)如圖1,當(dāng)點(diǎn)D在⊙O上時(shí),請你僅用無刻度的直尺在AB上取點(diǎn)P,使DP⊥AB于P;
(2)如圖2,當(dāng)點(diǎn)D在⊙O內(nèi)時(shí),請你僅用無刻度的直尺在AB上取點(diǎn)Q,使EQ⊥AB于Q.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com