【題目】如圖,已知△ABC中,∠C90°,ACBC2,將△ABC繞點A順時針方向旋轉(zhuǎn)60°到△ABC′的位置,連接CB,則CB的長為_____

【答案】

【解析】

如圖,作輔助線;證明△ABC′≌△BBC′,得到∠MBB′=∠MBA30°;求出BM、CM的長,即可解決問題

解:如圖,連接BB′,延長BC′交AB′于點M;

由題意得:∠BAB′=60°,BABA,

∴△ABB′為等邊三角形,

∴∠ABB′=60°,ABBB

在△ABC′與△BBC′中,

,

∴△ABC′≌△BBC′(SSS),

∴∠MBB′=∠MBA30°,

BMAB′,且AMBM;

由題意得:AB216,

AB′=AB4AM2,

CMAB′=2;由勾股定理可求:BM2 ,

CB22,

故答案為:22

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+c(a≠0)與x軸交于點A(﹣1,0)和B(3,0),與y軸交于點C,點D的橫坐標為m(0<m<3),連結(jié)DC并延長至E,使得CE=CD,連結(jié)BE,BC.

(1)求拋物線的解析式;

(2)用含m的代數(shù)式表示點E的坐標,并求出點E縱坐標的范圍;

(3)求BCE的面積最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】P是正方形ABCDAB上一點(不與A,B重合),連接PD并將線段PD繞點P順時針旋轉(zhuǎn)90°,得到線段PE,連接BE,則∠CBE等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線l:y=ax2+bx+c(a,b,c均不為0)的頂點為M,與y軸的交點為N,我們稱以N為頂點,對稱軸是y軸且過點M的拋物線為拋物線l的衍生拋物線,直線MN為拋物線l的衍生直線.

(1)如圖,拋物線y=x2﹣2x﹣3的衍生拋物線的解析式是   ,衍生直線的解析式是   ;

(2)若一條拋物線的衍生拋物線和衍生直線分別是y=﹣2x2+1和y=﹣2x+1,求這條拋物線的解析式;

(3)如圖,設(shè)(1)中的拋物線y=x2﹣2x﹣3的頂點為M,與y軸交點為N,將它的衍生直線MN先繞點N旋轉(zhuǎn)到與x軸平行,再沿y軸向上平移1個單位得直線n,P是直線n上的動點,是否存在點P,使△POM為直角三角形?若存在,求出所有點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠CAB=70°,在同一平面內(nèi),將△ABC繞點A旋轉(zhuǎn)到△ABC′的位置,使得CC′∥AB,則∠BAB′=________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=﹣x2+2x+3的頂點為D,它與x軸交于AB兩點(點A在點B的左側(cè)),與y軸交于點C

1)求頂點D的坐標;

2)求直線BC的解析式;

3)求△BCD的面積;

4)當(dāng)點P在直線BC上方的拋物線上運動時,△PBC的面積是否存在最大值?若存在,請求出這個最大值,并且寫出此時點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,ABAC,點A在以BC為直徑的半圓內(nèi).請僅用無刻度的直尺分別按下列要求畫圖(保留畫圖痕跡).

1)在圖1中作弦EF,使EFBC

2)在圖2中作出圓心O

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,D是等邊三角形ABC內(nèi)一點,將線段AD繞點A順時針旋轉(zhuǎn)60°,得到線段AE,連接CD,BE.

(1)求證:∠AEB=∠ADC;

(2)連接DE,若ADC=105°,求BED的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,平行四邊形中,點邊上,且交于點;

1)如果,,那么請用、來表示;

2)在原圖中求作向量、方向上的分向量;(不要求寫作法,但要指出所作圖中表示結(jié)論的向量)

查看答案和解析>>

同步練習(xí)冊答案