【題目】將矩形OABC置于平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(0,4),點(diǎn)C的坐標(biāo)為(m,0)(m>0),點(diǎn)D(m,1)在BC上,將矩形OABC沿AD折疊壓平,使點(diǎn)B落在坐標(biāo)平面內(nèi),設(shè)點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)E.
(1)當(dāng)m=3時(shí),點(diǎn)B的坐標(biāo)為 ,點(diǎn)E的坐標(biāo)為 ;
(2)隨著m的變化,試探索:點(diǎn)E能否恰好落在x軸上?若能,請(qǐng)求出m的值;若不能,請(qǐng)說明理由.
(3)如圖,若點(diǎn)E的縱坐標(biāo)為-1,且點(diǎn)(2,a)落在△ADE的內(nèi)部,求a的取值范圍.
【答案】(1)(3,4),(0,1);(2)能,m=;(3)1<a<2.
【解析】
(1)根據(jù)點(diǎn)A、點(diǎn)D、點(diǎn)C的坐標(biāo)和矩形的性質(zhì)可以得到點(diǎn)B和點(diǎn)E的坐標(biāo);
(2)由折疊的性質(zhì)求得線段DE和AE的長(zhǎng),然后利用勾股定理得到有關(guān)m的方程,求得m的值即可;
(3)過點(diǎn)E作EF⊥AB于F,EF分別與 AD、OC交于點(diǎn)G、H,過點(diǎn)D作DP⊥EF于點(diǎn)P,首先利用勾股定理求得線段DP的長(zhǎng),從而求得線段BF的長(zhǎng),再利用△AFG∽△ABD得到比例線段求得線段FG的長(zhǎng),最后求得a的取值范圍.
(1)點(diǎn)B的坐標(biāo)為(3,4),
∵AB=BD=3,
∴△ABD是等腰直角三角形,
∴∠BAD=45°,
則∠DAE=∠BAD=45°,
則E在y軸上.
AE=AB=BD=3,
∴四邊形ABDE是正方形,OE=1,
則點(diǎn)E的坐標(biāo)為(0,1);
故答案為(3,4),(0,1);
(2)點(diǎn)E能恰好落在x軸上.理由如下:
∵四邊形OABC為矩形,
∴BC=OA=4,∠AOC=∠DCE=90,
由折疊的性質(zhì)可得:DE=BD=OACD=41=3,AE=AB=OC=m,
如圖,假設(shè)點(diǎn)E恰好落在x軸上,在Rt△CDE中,由
勾股定理可得EC===,
則有OE=OCCE=m,
在Rt△AOE中,OA2+OE2=AE2,
即,解得m=;
(3)如圖,過點(diǎn)E作EF⊥AB于F,EF分別與AD、OC交于點(diǎn)G、H,過點(diǎn)D作DP⊥EF于點(diǎn)P,則EP=PH+EH=DC+EH=2,
在Rt△PDE中,由勾股定理可得,
∴BF=DP=,
在Rt△AEF中,AF=ABBF=m,EF=5,AE=m
∵AF2+EF2=AE2
∴(m)2+52=m2,
解得m=,
∴AB=,AF=,E(,1)
∵∠AFG=∠ABD=90,∠FAG=∠BAD
∴△AFG∽△ABD
∴,即,
解得FG=2,
∴EG=EFFG=3
∴點(diǎn)G的縱坐標(biāo)為2,
∵點(diǎn)(,a)在直線x=上,且點(diǎn)(,a)落在△ADE的內(nèi)部,
∴此點(diǎn)必在EG上,
∴1<a<2,
故a的取值范圍為1<a<2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】記:P1=﹣2,P2=(﹣2)×(﹣2),P3=(﹣2)×(﹣2)×(﹣2),…,.
(1)計(jì)算P7÷P8的值;
(2)計(jì)算2P2019+P2020的值;
(3)猜想2Pn與Pn+1的關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在Rt△ABC中,∠A=90°,有一個(gè)銳角為60°,BC=6.若點(diǎn)P在直線AC上(不與點(diǎn)A,C重合),且∠ABP=30°,則CP的長(zhǎng)為___________________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為測(cè)山高,在點(diǎn)A處測(cè)得山頂D的仰角為30°,從點(diǎn)A向山的方向前進(jìn)140米到達(dá)點(diǎn)B,在B處測(cè)得山頂D的仰角為60°(如圖①).
(1)在所給的圖②中尺規(guī)作圖:過點(diǎn)D作DC⊥AB,交AB的延長(zhǎng)線于點(diǎn)C(保留作圖痕跡);
(2)山高DC是多少(結(jié)果保留根號(hào)形式)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,直線的解析式為,該直線與軸、軸分別交于點(diǎn),以為邊在第一象限內(nèi)作正△ABC.若點(diǎn)在第一象限內(nèi),且滿足,則的取值范圍是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知OA⊥OB,點(diǎn)O為垂足,OC是∠AOB內(nèi)任意一條射線,OB,OD分別平分∠COD,∠BOE,下列結(jié)論:①∠COD=∠BOE;②∠COE=3∠BOD;③∠BOE=∠AOC;④∠AOC與∠BOD互余,其中正確的有______(只填寫正確結(jié)論的序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在“節(jié)能減排,做環(huán)保小衛(wèi)士”活動(dòng)中,小明對(duì)兩種照明燈的使用情況進(jìn)行了調(diào)查,得出如表所示的數(shù)據(jù):
功率 | 使用壽命 | 價(jià)格 | |
普通白熾燈 | 瓦(即千瓦) | 小時(shí) | 元/盞 |
優(yōu)質(zhì)節(jié)能燈 | 瓦(即千瓦) | 小時(shí) | 元/盞 |
已知這兩種燈的照明效果一樣,小明家所在地的電價(jià)是每度元.(注:用電度數(shù)功率(千瓦)時(shí)間(小時(shí)),費(fèi)用燈的售價(jià)電費(fèi));如:若選用一盞普通白熾燈照明小時(shí),那么它的費(fèi)用為(元),請(qǐng)解決以下問題:
(1)在白熾燈的使用壽命內(nèi),設(shè)照明時(shí)間為小時(shí),請(qǐng)用含的代數(shù)式分別表示用一盞白熾燈的費(fèi)用,(元)和一盞節(jié)能燈的費(fèi)用(元);
(2)在白熾燈的使用壽命內(nèi),照明多少小時(shí)時(shí),使用這兩種燈的費(fèi)用相等?
(3)如果計(jì)劃照明小時(shí),購買哪一種燈更省錢?請(qǐng)你通過計(jì)算說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為(0,4),線段的位置如圖所示,其中點(diǎn)的坐標(biāo)為(,),點(diǎn)的坐標(biāo)為(3,).
(1)將線段平移得到線段,其中點(diǎn)的對(duì)應(yīng)點(diǎn)為,點(diǎn)的對(duì)應(yīng)點(diǎn)為點(diǎn).
①點(diǎn)平移到點(diǎn)的過程可以是:先向 平移 個(gè)單位長(zhǎng)度,再向 平移 個(gè)單位長(zhǎng)度;
②點(diǎn)的坐標(biāo)為 .
(2)在(1)的條件下,若點(diǎn)的坐標(biāo)為(4,0),連接,畫出圖形并求的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,將四張邊長(zhǎng)各不相同的正方形紙片按如圖方式放入矩形ABCD內(nèi)(相鄰紙片之間互不重疊也無縫隙),未被四張正方形紙片覆蓋的部分用陰影表示,設(shè)右上角與左下角陰影部分的周長(zhǎng)的差為l.若知道l的值,則不需要測(cè)量就能知道周長(zhǎng)的正方形的標(biāo)號(hào)為( )
A.①B.②C.③D.④
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com