【題目】已知如圖,ADBC,ABBC,CDDE,CD=ED,AD=2,BC=3,則ADE的面積為( )

A.1 B.2 C.5 D.無法確定

【答案】A

【解析】

試題分析:因?yàn)橹繟D的長(zhǎng),所以只要求出AD邊上的高,就可以求出ADE的面積.過D作BC的垂線交BC于G,過E作AD的垂線交AD的延長(zhǎng)線于F,構(gòu)造出RtEDFRtCDG,求出GC的長(zhǎng),即為EF的長(zhǎng),然后利用三角形的面積公式解答即可.

解:過D作BC的垂線交BC于G,過E作AD的垂線交AD的延長(zhǎng)線于F,

∵∠EDF+FDC=90°

GDC+FDC=90°,

∴∠EDF=GDC

于是在RtEDF和RtCDG中,

∴△DEF≌△DCG,

EF=CG=BC﹣BG=BC﹣AD=3﹣2=1,

所以,SADE=(AD×EF)÷2=(2×1)÷2=1.

故選A.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一種“24 點(diǎn)游戲,其游戲規(guī)則是:任取一副撲克牌,我們約定A 1,J,QK 分別為 11、12、13,并規(guī)定紅色牌為正,黑色牌為負(fù),任取 4 張牌,將這 4 張牌的牌面所表示的數(shù)進(jìn)行加減乘除四則運(yùn)算(每個(gè)數(shù)用且只用 1 ,使其結(jié)果等于 24.

例如,取 4 張牌為:紅桃 A,紅桃 2,方塊 3,方塊 4,可作運(yùn)算(1+2+3)×4 =24.

[注意上述運(yùn)算與 4×(1+2+3)=24 應(yīng)視作相同方法的運(yùn)算]

現(xiàn)有 4 張撲克牌分別為紅桃 3、黑桃 6、方塊 4、方塊 10,運(yùn)用上述規(guī)則寫出 3種不同的運(yùn)算式:

(1) ;

(2) ;

(3)

(4)另有 4 張撲克牌分別為紅桃 3,黑桃 5,梅花 J,方塊 7,可通過運(yùn)算式 ,使其結(jié)果等于 24.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,已知 P是線段 AB上的一點(diǎn),,C, D兩點(diǎn)從 A, P同時(shí)出發(fā),分別以2 ,1的速度沿 AB方向運(yùn)動(dòng),當(dāng)點(diǎn) D到達(dá)終點(diǎn) B時(shí),點(diǎn)C也停止運(yùn)動(dòng),設(shè)AB= ,點(diǎn) C,D的運(yùn)動(dòng)時(shí)間為

(1)用含 的代數(shù)式表示線段 CP 的長(zhǎng)度.

(2)當(dāng) t =5時(shí),,求線段 AB的長(zhǎng).

(3)當(dāng) BC-AC=PC時(shí),求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將矩形ABCD沿AF折疊,使點(diǎn)D落在BC邊的點(diǎn)E處,過點(diǎn)E作EG∥CD交AF于點(diǎn)G,連接DG.

(1)求證:四邊形EFDG是菱形;
(2)探究線段EG、GF、AF之間的數(shù)量關(guān)系,并說明理由;
(3)若AG=6,EG=2 ,求BE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A的坐標(biāo)為(﹣2,0),直線y=﹣ x+3與x軸、y軸分別交于點(diǎn)B和點(diǎn)C,連接AC,頂點(diǎn)為D的拋物線y=ax2+bx+c過A、B、C三點(diǎn).

(1)請(qǐng)直接寫出B、C兩點(diǎn)的坐標(biāo),拋物線的解析式及頂點(diǎn)D的坐標(biāo);
(2)設(shè)拋物線的對(duì)稱軸DE交線段BC于點(diǎn)E,P是第一象限內(nèi)拋物線上一點(diǎn),過點(diǎn)P作x軸的垂線,交線段BC于點(diǎn)F,若四邊形DEFP為平行四邊形,求點(diǎn)P的坐標(biāo);
(3)設(shè)點(diǎn)M是線段BC上的一動(dòng)點(diǎn),過點(diǎn)M作MN∥AB,交AC于點(diǎn)N,點(diǎn)Q從點(diǎn)B出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度沿線段BA向點(diǎn)A運(yùn)動(dòng),運(yùn)動(dòng)時(shí)間為t(秒),當(dāng)t(秒)為何值時(shí),存在△QMN為等腰直角三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】△ABC中,∠BAC=120°,AB=AC,∠ACB的平分線交ABD,AE平分∠BACBCE,連接DE,DF⊥BCF,則∠EDC=_____°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】之前我們學(xué)習(xí)了一元一次方程的解法,下面是一道解一元一次方程的題:

解方程=1

老師說:這是一道含有分母的一元一次方程,我們可以根據(jù)等式的性質(zhì),可以把方程的兩邊同乘以6,這樣就可以去掉分母了.于是,小明按照老師說的方法進(jìn)行了解答,小明同學(xué)的解題過程如下:

解:方程兩邊同時(shí)乘以6,得×6﹣×6=1…………①

去分母,得:2(2﹣3x)﹣3(x﹣5)=1………②

去括號(hào),得:4﹣6x﹣3x+15=1……………③

移項(xiàng),得:﹣6x﹣3x=1﹣4﹣15…………④

合并同類項(xiàng),得﹣9x=﹣18……………⑤

系數(shù)化1,得:x=2………………⑥

上述小明的解題過程從第   步開始出現(xiàn)錯(cuò)誤,錯(cuò)誤的原因是   

請(qǐng)幫小明改正錯(cuò)誤,寫出完整的解題過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】之前我們學(xué)習(xí)了一元一次方程的解法,下面是一道解一元一次方程的題:

解方程=1

老師說:這是一道含有分母的一元一次方程,我們可以根據(jù)等式的性質(zhì),可以把方程的兩邊同乘以6,這樣就可以去掉分母了.于是,小明按照老師說的方法進(jìn)行了解答,小明同學(xué)的解題過程如下:

解:方程兩邊同時(shí)乘以6,得×6﹣×6=1…………①

去分母,得:2(2﹣3x)﹣3(x﹣5)=1………②

去括號(hào),得:4﹣6x﹣3x+15=1……………③

移項(xiàng),得:﹣6x﹣3x=1﹣4﹣15…………④

合并同類項(xiàng),得﹣9x=﹣18……………⑤

系數(shù)化1,得:x=2………………⑥

上述小明的解題過程從第   步開始出現(xiàn)錯(cuò)誤,錯(cuò)誤的原因是   

請(qǐng)幫小明改正錯(cuò)誤,寫出完整的解題過程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】仔細(xì)觀察下面的日歷,回答下列問題:

(1)任意用正方形框圈出四個(gè)日期,如果正方形框中的第一個(gè)數(shù)(左上角的數(shù))為,用代數(shù)式表示正方形框中的四個(gè)數(shù)的和;

(2)若將正方形框上下左右移動(dòng),可框住另外的四個(gè)數(shù),這四個(gè)數(shù)的和能等于嗎?如果能,依次寫出這四個(gè)數(shù);如果不能,請(qǐng)說明理由

查看答案和解析>>

同步練習(xí)冊(cè)答案