【題目】如圖,已知點A的坐標為(﹣2,0),直線y=﹣ x+3與x軸、y軸分別交于點B和點C,連接AC,頂點為D的拋物線y=ax2+bx+c過A、B、C三點.

(1)請直接寫出B、C兩點的坐標,拋物線的解析式及頂點D的坐標;
(2)設(shè)拋物線的對稱軸DE交線段BC于點E,P是第一象限內(nèi)拋物線上一點,過點P作x軸的垂線,交線段BC于點F,若四邊形DEFP為平行四邊形,求點P的坐標;
(3)設(shè)點M是線段BC上的一動點,過點M作MN∥AB,交AC于點N,點Q從點B出發(fā),以每秒1個單位長度的速度沿線段BA向點A運動,運動時間為t(秒),當t(秒)為何值時,存在△QMN為等腰直角三角形?

【答案】
(1)

解:令x=0代入y=﹣ x+3

∴y=3,

∴C(0,3),

令y=0代入y=﹣ x+3

∴x=4,

∴B(4,0),

設(shè)拋物線的解析式為:y=a(x+2)(x﹣4),

把C(0,3)代入y=a(x+2)(x﹣4),

∴a=﹣

∴拋物線的解析式為:y=﹣ (x+2)(x﹣4)=﹣ x2+ x+3,

∴頂點D的坐標為(1,


(2)

解:

當DP∥BC時,

此時四邊形DEFP是平行四邊形,

設(shè)直線DP的解析式為y=mx+n,

∵直線BC的解析式為:y=﹣ x+3,

∴m=﹣ ,

∴y=﹣ x+n,

把D(1, )代入y=﹣ x+n,

∴n=

∴直線DP的解析式為y=﹣ x+ ,

∴聯(lián)立 ,

解得:x=3或x=1(舍去),

∴把x=3代入y=﹣ x+ ,

y= ,

∴P的坐標為(3,


(3)

解:由題意可知:0≤t≤6,

設(shè)直線AC的解析式為:y=m1x+n1,

把A(﹣2,0)和C(0,3)代入y=m1x+n1,

得:

∴解得 ,

∴直線AC的解析式為:y= x+3,

由題意知:QB=t,

如圖1,當∠NMQ=90°,

∴OQ=4﹣t,

令x=4﹣t代入y=﹣ x+3,

∴y= t,

∴M(4﹣t, t),

∵MN∥x軸,

∴N的縱坐標為 t,

把y= t代入y= x+3,

∴x= t﹣2,

∴N( t﹣2, t),

∴MN=(4﹣t)﹣( t﹣2)=6﹣ t,

∵MQ∥OC,

∴△BQM∽△BOC,

∴MQ= t,

當MN=MQ時,

∴6﹣ t= t,

∴t= ,

此時QB= ,符合題意,

如圖2

當∠QNM=90°時,

∵QB=t,

∴點Q的坐標為(4﹣t,0)

∴令x=4﹣t代入y= x+3,

∴y=9﹣ t,

∴N(4﹣t,9﹣ t),

∵MN∥x軸,

∴點M的縱坐標為9﹣ t,

∴令y=9﹣ t代入y=﹣ x+3,

∴x=2t﹣8,

∴M(2t﹣8,9﹣ t),

∴MN=(2t﹣8)﹣(4﹣t)=3t﹣12,

∵NQ∥OC,

∴△AQN∽△AOC,

,

∴NQ=9﹣ t,

當NQ=MN時,

∴9﹣ t=3t﹣12,

∴t= ,

∴此時QB= ,符合題意

如圖3,

當∠NQM=90°,

過點Q作QE⊥MN于點E,

過點M作MF⊥x軸于點F,

設(shè)QE=a,

令y=a代入y=﹣ x+3,

∴x=4﹣ a,

∴M(4﹣ a,a),

令y=a代入y= x+3,

∴x= a﹣2,

∴N( a﹣2,0),

∴MN=(4﹣ a)﹣( a﹣2)=6﹣2a,

當MN=2QE時,

∴6﹣2a=2a,

∴a= ,

∴MF=QE=

∵MF∥OC,

∴△BMF∽△BCO,

,

∴BF=2,

∴QB=QF+BF= +2= ,

∴t= ,此情況符合題意,

綜上所述,當△QMN為等腰直角三角形時,此時t=


【解析】本題考查二次函數(shù)的綜合問題,涉及待定系數(shù)法求一次函數(shù)和二次函數(shù)的解析式,相似三角形判定與性質(zhì),等腰直角三角形的性質(zhì)知識,要會利用數(shù)形結(jié)合的思想把代數(shù)和幾何圖形結(jié)合起來,利用點的坐標的意義表示線段的長度,從而求出線段之間的關(guān)系.(1)分別令y=0和x=0代入y=﹣ x+3即可求出B和C的坐標,然后設(shè)拋物線的交點式為y=a(x+2)(x﹣4),最后把C的坐標代入拋物線解析式即可求出a的值和頂點D的坐標;(2)若四邊形DEFP為平行四邊形時,則DP∥BC,設(shè)直線DP的解析式為y=mx+n,則m=﹣ ,求出直線DP的解析式后,聯(lián)立拋物線解析式和直線DP的解析式即可求出P的坐標;(3)由題意可知,0≤t≤6,若△QMN為等腰直角三角形,則共有三種情況,①∠NMQ=90°;②∠MNQ=90°;③∠NQM=90°.
【考點精析】解答此題的關(guān)鍵在于理解拋物線與坐標軸的交點的相關(guān)知識,掌握一元二次方程的解是其對應(yīng)的二次函數(shù)的圖像與x軸的交點坐標.因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點.當b2-4ac>0時,圖像與x軸有兩個交點;當b2-4ac=0時,圖像與x軸有一個交點;當b2-4ac<0時,圖像與x軸沒有交點.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是拋物線y=ax2+bx+c(a≠0)的部分圖象,其頂點坐標為(1,n),且與x軸的一個交點在點(3,0)和(4,0)之間.則下列結(jié)論:
①a﹣b+c>0;
②3a+b=0;
③b2=4a(c﹣n);
④一元二次方程ax2+bx+c=n﹣1有兩個不相等的實數(shù)根.
其中正確結(jié)論的個數(shù)是( 。

A.1
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知:在平行四邊形ABCD中,AB=2,AD=4,ABC=60°,EAD上一點,連接CE,AFCE且交BC于點F.

(1)求證:四邊形AECF為平行四邊形.

(2)證明:AFB≌△CE D.

(3)DE等于多少時,四邊形AECF為菱形.

(4)DE等于多少時,四邊形AECF為矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,D從點C出發(fā)沿CA方向以每秒2個單位長的速度向點A勻速運動,同時點E從點A出發(fā)沿AB方向以每秒1個單位長的速度向點B勻速運動,當其中一個點到達終點時,另一個點也隨之停止運動,設(shè)點D、E運動的時間是t過點D于點F,連接DE、EF

求證:

四邊形AEFD能夠成為菱形嗎?如果能,求出相應(yīng)的t值;如果不能,說明理由.

t為何值時,為直角三角形?請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標系中直線x軸、y軸相交于AB兩點,動點C在線段OA上,將線段CB繞著點C順時針旋轉(zhuǎn)得到CD,此時點D恰好落在直線AB上時,過點D軸于點E

求證:;

如圖2,將沿x軸正方向平移得,當直線經(jīng)過點D時,求點D的坐標及平移的距離;

若點Py軸上,點Q在直線AB是否存在以C、DP、Q為頂點的四邊形是平行四邊形?若存在,直接寫出所有滿足條件的Q點坐;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,ADBC,ABBC,CDDE,CD=ED,AD=2,BC=3,則ADE的面積為( )

A.1 B.2 C.5 D.無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠BAD=∠CAE=90°,AB=AD,AE=AC,AF⊥CB,垂足為F.

(1)求證:△ABC≌△ADE;

(2)求∠FAE的度數(shù);

(3)求證:CD=2BF+DE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算下列不等式(組):

(1)x-<2-.

(2)-2≤≤7

(3)

(4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=x2+bx與直線y=2x+4交于A(a,8)、B兩點,點P是拋物線上A、B之間的一個動點,過點P分別作x軸、y軸的平行線與直線AB交于點C和點E.

(1)求拋物線的解析式;
(2)若C為AB中點,求PC的長;
(3)如圖,以PC,PE為邊構(gòu)造矩形PCDE,設(shè)點D的坐標為(m,n),請求出m,n之間的關(guān)系式.

查看答案和解析>>

同步練習冊答案