【題目】如圖,△BAD是由△BEC在平面內(nèi)繞點B旋轉(zhuǎn)60°而得,且AB⊥BC,BE=CE,連接DE.
(1)求證:△BDE≌△BCE;
(2)試判斷四邊形ABED的形狀,并說明理由.
【答案】證明見解析.
【解析】試題分析:(1)根據(jù)旋轉(zhuǎn)的性質(zhì)可得DB=CB,∠ABD=∠EBC,∠ABE=60°,然后根據(jù)垂直可得出∠DBE=∠CBE=30°,繼而可根據(jù)SAS證明△BDE≌△BCE;
(2)根據(jù)(1)以及旋轉(zhuǎn)的性質(zhì)可得,△BDE≌△BCE≌△BDA,繼而得出四條棱相等,證得四邊形ABED為菱形.
(1)證明:∵△BAD是由△BEC在平面內(nèi)繞點B旋轉(zhuǎn)60°而得,
∴DB=CB,∠ABD=∠EBC,∠ABE=60°,
∵AB⊥EC,
∴∠ABC=90°,
∴∠DBE=∠CBE=30°,
在△BDE和△BCE中,
∵,
∴△BDE≌△BCE;
(2)四邊形ABED為菱形;
由(1)得△BDE≌△BCE,
∵△BAD是由△BEC旋轉(zhuǎn)而得,
∴△BAD≌△BEC,
∴BA=BE,AD=EC=ED,
又∵BE=CE,
∴四邊形ABED為菱形.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠E=50°,∠BAC=50°,∠D=110°,求∠ABD的度數(shù).
請完善解答過程,并在括號內(nèi)填寫相應(yīng)的理論依據(jù).
解:∵∠E=50°,∠BAC=50°,(已知)
∴∠E= (等量代換)
∴ ∥ .( )
∴∠ABD+∠D=180°.( )
∴∠D=110°,(已知)
∴∠ABD=70°.(等式的性質(zhì))
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列各式:定義一種新運算“⊙”:
1⊙3=1×4+3=7,3⊙﹣1=3×4﹣1=11,5⊙4=5×4+4=24
4⊙(﹣3)=4×4﹣3=13,(﹣2)⊙(﹣5)=(﹣2)×4﹣5=﹣13,……
(1)寫出一般結(jié)論:a⊙b=_____;
(2)如果a≠b,那么a⊙b_____b⊙a(填“=”或“≠”)
(3)先化簡,再求值:(a﹣b)⊙(2a+3b).其中a=﹣,b=2019.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】點O為直線AB上一點,將一直角三角板OMN的直角頂點放在點O處.射線OC平分∠MOB.
(1)如圖1,若∠AOM=30°,求∠CON的度數(shù);
(2)在圖1中,若∠AOM=a,直接寫出∠CON的度數(shù)(用含a的代數(shù)式表示);
(3)將圖1中的直角三角板OMN繞頂點O順時針旋轉(zhuǎn)至圖2的位置,一邊OM在射線OB上方,另一邊ON在直線AB的下方.
①探究∠AOM和∠CON的度數(shù)之間的關(guān)系,寫出你的結(jié)論,并說明理由;
②當∠AOC=3∠BON時,求∠AOM的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】小敏從A地出發(fā)向B地行走,同時小聰從B地出發(fā)向A地行走,如圖所示,相交于點P的兩條線段l1、l2分別表示小敏、小聰離B地的距離y(km)與已用時間x(h)之間的關(guān)系,則小敏、小聰行走的速度分別是( )
A.3km/h和4km/h
B.3km/h和3km/h
C.4km/h和4km/h
D.4km/h和3km/h
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為調(diào)查學生的身體素質(zhì),隨機抽取了某市的若干所初中學校,根據(jù)學校學生的肺活量指標等級繪制了相應(yīng)的統(tǒng)計圖,如圖. 根據(jù)以上統(tǒng)計圖,解答下列問題:
(1)這次調(diào)查共抽取了幾所學校?請補全圖1;
(2)估計該市140所初中學校中,有幾所學校的肺活量指標等級為優(yōu)秀?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=2,△A′B′C可以由△ABC繞點C順時針旋轉(zhuǎn)得到,其中點A′與點A是對應(yīng)點,點B′與點B是對應(yīng)點,連接AB′,且A、B′、A′在同一條直線上,則AA′的長為( 。
A. 6 B. 4 C. 3 D. 3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】5月19日為中國旅游日,衢州推出“讀萬卷書,行萬里路,游衢州景”的主題系列旅游惠民活動,市民王先生準備在優(yōu)惠日當天上午從孔氏南宗家廟、爛柯山、龍游石窟中隨機選擇一個地點;下午從江郎山、三衢石林、開化根博園中隨機選擇一個地點游玩,則王先生恰好上午選中孔氏南宗家廟,下午選中江郎山這兩個地的概率是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知兩直線l1 , l2分別經(jīng)過點A(1,0),點B(﹣3,0),并且當兩直線同時相交于y正半軸的點C時,恰好有l(wèi)1⊥l2 , 經(jīng)過點A、B、C的拋物線的對稱軸與直線l1交于點K,如圖所示.
(1)求點C的坐標,并求出拋物線的函數(shù)解析式;
(2)拋物線的對稱軸被直線l1 , 拋物線,直線l2和x軸依次截得三條線段,問這三條線段有何數(shù)量關(guān)系?請說明理由;
(3)當直線l2繞點C旋轉(zhuǎn)時,與拋物線的另一個交點為M,請找出使△MCK為等腰三角形的點M,簡述理由,并寫出點M的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com