【題目】如圖,在□ABCD中,點(diǎn)E是對角線BD上的一點(diǎn),過點(diǎn)C作CF∥BD,且CF=DE,連接AE、BF、EF.
(1)求證:△ADE≌△BCF;
(2)若∠BFC-∠ABE=90°,判斷四邊形ABFE的形狀,并證明你的結(jié)論.
【答案】(1)證明見解析;(2)矩形,證明見解析
【解析】
(1)根據(jù)平行四邊形的性質(zhì)求得AD=BC,∠ADB=∠DBC,由平行線的性質(zhì)求得∠DBC=∠BCF,從而求得∠ADB=∠BCF,利用SAS定理判定三角形全等即可;
(2)先證明四邊形ABFE是平行四邊形,由△ADE≌△BCF,得出∠AED=∠BFC,由三角形的外角性質(zhì)證出∠BAE=90°,從而判定四邊形ABFE為矩形.
證明:(1)∵四邊形 ABCD 是平行四邊形,
∴AD=BC,AD∥BC,
∴∠ADB=∠DBC,
又∵CF∥DB,
∴∠DBC=∠BCF,
∴∠ADB=∠BCF,
又∵DE=CF,
∴△ADE≌△BCF;
(2)平行四邊形ABFE是矩形.
∵CF∥DE,CF=DE
∴四邊形 CDEF 是平行四邊形,
∴EF∥CD,EF=CD
∵四邊形 ABCD 是平行四邊形,
∴AB∥CD,AB=CD
∴AB∥EF,AB=EF
∴四邊形 ABFE 是平行四邊形,
∵△ADE≌△BCF,
∴∠AED=∠BFC,
又∵∠BFC-∠ABE=90°,
∴∠AED-∠ABE=90°,
∵∠AED-∠ABE=∠BAE,
∴∠BAE=90°,
∴□ABFE是矩形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某竹制品加工廠根據(jù)市場調(diào)研結(jié)果,對該廠生產(chǎn)的一種新型竹制品玩具未來兩年的銷售進(jìn)行預(yù)測,并建立如下模型:設(shè)第t個月,竹制品銷售量為P(單位:箱),P與t之間存在如圖所示函數(shù)關(guān)系,其圖象是線段AB(不含點(diǎn)A)和線段BC的組合.設(shè)第t個月銷售每箱的毛利潤為Q(百元),且Q與t滿足如下關(guān)系Q=2t+8(0≤t≤24).
(1)求P與t的函數(shù)關(guān)系式(6≤t≤24).
(2)該廠在第幾個月能夠獲得最大毛利潤?最大毛利潤是多少?
(3)經(jīng)調(diào)查發(fā)現(xiàn),當(dāng)月毛利潤不低于40000且不高于43200元時,該月產(chǎn)品原材料供給和市場售最和諧,此時稱這個月為“和諧月”,那么,在未來兩年中第幾個月為和諧月?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:二次函數(shù)C1:y1=ax2+2ax+a-1(a≠0).
(1)把二次函數(shù)C1的表達(dá)式化成y=a(x-h)2+b(a≠0)的形式 ,并寫出頂點(diǎn)坐標(biāo) ;
(2)已知二次函數(shù)C1的圖象經(jīng)過點(diǎn)A(-3,1).
①a的值 ;
②點(diǎn)B在二次函數(shù)C1的圖象上,點(diǎn)A,B關(guān)于對稱軸對稱,連接AB.二次函數(shù)C2:y2=kx2+kx(k≠0)的圖象,與線段AB只有一個交點(diǎn),則k的取值范圍 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖所示的兩條拋物線的解析式分別是y1=-ax2-ax+1,y2=ax2-ax-1(其中a為常數(shù),且a>0).
(1)請寫出三條與上述拋物線有關(guān)的不同類型的結(jié)論;
(2)當(dāng)a=時,設(shè)y1=-ax2-ax+1與x軸分別交于M,N兩點(diǎn)(M在N的左邊),y2=ax2-ax-1與x軸分別交于E,F兩點(diǎn)(E在F的左邊),觀察M,N,E,F四點(diǎn)坐標(biāo),請寫出一個你所得到的正確結(jié)論,并說明理由;
(3)設(shè)上述兩條拋物線相交于A,B兩點(diǎn),直線l,l1,l2都垂直于x軸,l1,l2分別經(jīng)過A,B兩點(diǎn),l在直線l1,l2之間,且l與兩條拋物線分別交于C,D兩點(diǎn),求線段CD的最大值?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,正方形中,點(diǎn)是對角線的中點(diǎn),點(diǎn)是線段上(不與點(diǎn),重合)的一個動點(diǎn),過點(diǎn)作且交邊于點(diǎn).
(1)求證:.
(2)如圖②,若正方形的邊長為,過點(diǎn)作于點(diǎn),在點(diǎn)運(yùn)動的過程中,的長度是否發(fā)生變化?若不變,試求出這個不變的值;若變化,請說明理由.
(3)用等式表示線段,,之間的數(shù)量關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列說法正確的是( )
A.袋中有形狀、大小、質(zhì)地完全一樣的5個紅球和1個白球,從中隨機(jī)抽出一個球,一定是紅球
B.天氣預(yù)報“明天降水概率10%”,是指明天有10%的時間會下雨
C.某地發(fā)行一種福利彩票,中獎率是千分之一,那么,買這種彩票1000張,一定會中獎
D.連續(xù)擲一枚均勻硬幣,若5次都是正面朝上,則第六次仍然可能正面朝上
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB、BC、CD分別與⊙O切于E、F、G,且AB∥CD.連接OB、OC,延長CO交⊙O于點(diǎn)M,過點(diǎn)M作MN∥OB交CD于N.
(1)求證:MN是⊙O的切線;
(2)當(dāng)OB=6cm,OC=8cm時,求⊙O的半徑及MN的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,PA切⊙O于點(diǎn)A,PC過點(diǎn)O且與⊙O交于B,C兩點(diǎn),若PA=6cm,PB=2cm,則△PAC的面積是_____cm2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】全國各地都在推行新型農(nóng)村醫(yī)療合作制度.南充市也正在推行:村民只要每人每年交元錢,就可以加入合作醫(yī)療,每年先由自己支付醫(yī)療費(fèi),年終時可得到按一定比例返回的返回款.小東與同學(xué)隨機(jī)調(diào)查了他們鎮(zhèn)的一些農(nóng)民,根據(jù)收集到的數(shù)據(jù)繪制了以下的統(tǒng)計圖,請根據(jù)以下信息解答問題:
(1)本次調(diào)查了多少村民?被調(diào)查的村民中,有多少人參加合作醫(yī)療得到了返回款?
(2)該鎮(zhèn)若有個村民,請你估計有多少人參加了合作醫(yī)療?要使兩年后參加合作醫(yī)療的人數(shù)增加到人,假設(shè)這兩年的年增長率相同,求這個年增長率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com