【題目】某竹制品加工廠根據(jù)市場調(diào)研結(jié)果,對(duì)該廠生產(chǎn)的一種新型竹制品玩具未來兩年的銷售進(jìn)行預(yù)測,并建立如下模型:設(shè)第t個(gè)月,竹制品銷售量為P(單位:箱),Pt之間存在如圖所示函數(shù)關(guān)系,其圖象是線段AB(不含點(diǎn)A)和線段BC的組合.設(shè)第t個(gè)月銷售每箱的毛利潤為Q(百元),且Qt滿足如下關(guān)系Q=2t+80≤t≤24).

1)求Pt的函數(shù)關(guān)系式(6≤t≤24).

2)該廠在第幾個(gè)月能夠獲得最大毛利潤?最大毛利潤是多少?

3)經(jīng)調(diào)查發(fā)現(xiàn),當(dāng)月毛利潤不低于40000且不高于43200元時(shí),該月產(chǎn)品原材料供給和市場售最和諧,此時(shí)稱這個(gè)月為和諧月,那么,在未來兩年中第幾個(gè)月為和諧月?

【答案】1P=﹣t+266t24);(2)該廠在第11個(gè)月能夠獲得最大毛利潤,最大毛利潤是45000元;(3)未來兩年中的和諧月有:6,7,8,14,15,16這六個(gè)月.

【解析】

1)當(dāng)6t24時(shí),設(shè)Pt的函數(shù)關(guān)系式為P=kt+b,把點(diǎn)B6,20)和C24,2)代入求出kb,即可得解;

2)設(shè)直線AB的函數(shù)解析式為P=mt+n,將A0,14),B 6,20)代入求出mn,分0t66t24來討論求解;

3)分0t66t24,結(jié)合(2)中求得的毛利潤函數(shù),列不等式組可解.

1)當(dāng)6t24時(shí),設(shè)Pt的函數(shù)關(guān)系式為P=kt+b

∵該圖象過點(diǎn)B6,20)和C24,2),

,

,

Pt的函數(shù)關(guān)系式為P=t+266t24).

2)設(shè)直線AB的函數(shù)解析式為P=mt+n,將A0,14),B 6,20)代入得:

,

,

∴直線AB的函數(shù)解析式為P=t+14,

∴當(dāng)0t6時(shí),利潤L=QP=2t+8)(t+14=2t2+36t+112=2t+9250

當(dāng)t=5時(shí),利潤L取最大值為25+9250=342(百元)=34200(元);

當(dāng)6t24時(shí),利潤L=QP=2t+8)(﹣t+26=2t2+44t+208=2t112+450

450百元=45000元,

∴當(dāng)t=11時(shí),利潤L有最大值,最大值為45000元.

綜上所述:該廠在第11個(gè)月能夠獲得最大毛利潤,最大毛利潤是45000元.

3)∵40000=400百元,43200=432百元,

第一個(gè)不等式無解,第二個(gè)不等式的解為6t814t16,

∴未來兩年中的和諧月有:6,7,814,15,16這六個(gè)月.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一個(gè)圓形轉(zhuǎn)盤,分黑色、白色兩個(gè)區(qū)域.

1)某人轉(zhuǎn)動(dòng)轉(zhuǎn)盤,對(duì)指針落在黑色區(qū)域或白色區(qū)域進(jìn)行了大量試驗(yàn),得到數(shù)據(jù)如下表:

實(shí)驗(yàn)次數(shù)()

10

100

2000

5000

10000

50000

100000

白色區(qū)域次數(shù)()

3

34

680

1600

3405

16500

33000

落在白色區(qū)域頻率

0.3

0.34

0.34

0.32

0.34

0.33

0.33

請(qǐng)你利用上述實(shí)驗(yàn),估計(jì)轉(zhuǎn)動(dòng)該轉(zhuǎn)盤指針落在白色區(qū)域的概率為___________(精確到0.01);

2)若該圓形轉(zhuǎn)盤白色扇形的圓心角為120度,黑色扇形的圓心角為,轉(zhuǎn)動(dòng)轉(zhuǎn)盤兩次,求指針一次落在白色區(qū)域,另一次落在黑色區(qū)域的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線yx2+2m1x2mm0.5)的最低點(diǎn)的縱坐標(biāo)為﹣4

1)求拋物線的解析式;

2)如圖1,拋物線與x軸交于AB兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)CD為拋物線上的一點(diǎn),BD平分四邊形ABCD的面積,求點(diǎn)D的坐標(biāo);

3)如圖2,平移拋物線yx2+2m1x2m,使其頂點(diǎn)為坐標(biāo)原點(diǎn),直線y=﹣2上有一動(dòng)點(diǎn)P,過點(diǎn)P作兩條直線,分別與拋物線有唯一的公共點(diǎn)E、F(直線PE、PF不與y軸平行),求證:直線EF恒過某一定點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,AB=10,AC=16,點(diǎn)M是對(duì)角線AC上的一個(gè)動(dòng)點(diǎn),過點(diǎn)M作PQ⊥AC交AB于點(diǎn)P,交AD于點(diǎn)Q,將△APQ沿PQ折疊,點(diǎn)A落在點(diǎn)E處,當(dāng)△BCE是等腰三角形時(shí),AP的長為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,菱形ABCD的頂點(diǎn)Ax軸的正半軸上,∠C60°,頂點(diǎn)BD的縱坐標(biāo)相同,已知點(diǎn)B的橫坐標(biāo)為7,若過點(diǎn)D的雙曲線yk0)恰好過邊AB的中點(diǎn)E,則k_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,小亮家在點(diǎn)O處,其所在學(xué)校的校園為矩形ABCD,東西長AD1000米,南北長AB600米.學(xué)校的南正門在AD的中點(diǎn)E處,B為學(xué)校的西北角門.小亮從家到學(xué)?梢宰唏R路,路線OME(∠M90°);也可以走沿河觀光路,路線OB.小亮在D處測得O位于北偏東30°,在B處測得O位于北偏東60°小亮從家到學(xué)校的兩條路線中,長路線比短路線多_____米.(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知拋物線與拋物線的形狀相同,開口方向相反,且相交于點(diǎn)和點(diǎn).拋物線軸正半軸交于點(diǎn)為拋物線兩點(diǎn)間一動(dòng)點(diǎn),過點(diǎn)作直線軸,與交于點(diǎn)

(1)求拋物線與拋物線的解析式;

(2)四邊形的面積為,求的最大值,并寫出此時(shí)點(diǎn)的坐標(biāo);

(3)如圖2,的對(duì)稱軸為直線交于點(diǎn),在(2)的條件下,直線上是否存在一點(diǎn),使得以為頂點(diǎn)的三角形與相似?如果存在,求出點(diǎn)的坐標(biāo);如果不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)yax2+bx+ca0)的圖象與x軸交于點(diǎn)A(﹣1,0),與y軸的交點(diǎn)B在(0,﹣2)和C0,﹣1)之間(不包括這兩點(diǎn)),對(duì)稱軸為直線x1,下列結(jié)論:abc0;②4a+2b+c0;③4acb28a;bc.其中含所有正確結(jié)論的選項(xiàng)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】拋物線y=ax2+bx+c的頂點(diǎn)為D(1,2),與x軸的一個(gè)交點(diǎn)A在點(diǎn)(30)(2,0)之間,其部分圖象如圖,則以下結(jié)論:①b24ac0;②a+b+c0;③ca=2;④方程ax2+bx+c2=0有兩個(gè)相等的實(shí)數(shù)根.其中正確結(jié)論是________.

查看答案和解析>>

同步練習(xí)冊(cè)答案