【題目】已知點(diǎn)A(3a﹣6,a+4),B(﹣3,2),AB∥y軸,點(diǎn)P為直線(xiàn)AB上一點(diǎn),且PA=2PB,則點(diǎn)P的坐標(biāo)為_____.
【答案】(﹣3,3) 或(﹣3,﹣1)
【解析】
由軸可知的橫坐標(biāo)相等,故,即可求出,得,根據(jù)已知,分在線(xiàn)段上和在線(xiàn)段延長(zhǎng)線(xiàn)兩種情況求出,即可得到兩種情況下的坐標(biāo).
解:∵AB∥y軸,
∴3a﹣6=﹣3,解得a=1,
∴A(﹣3,5),
∵B點(diǎn)坐標(biāo)為(﹣3,2),
∴AB=3,B在A的下方,
①當(dāng)P在線(xiàn)段AB上時(shí),
∵PA=2PB
∴PA=AB=2,
∴此時(shí)P坐標(biāo)為(﹣3,3),
②當(dāng)P在AB延長(zhǎng)線(xiàn)時(shí),
∵PA=2PB,即AB=PB,
∴PA=2AB,
∴此時(shí)P坐標(biāo)為(﹣3,﹣1);
故答案為(﹣3,3)或(﹣3,﹣1).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】最近霧霾天氣頻繁,使得空氣凈化器得以暢銷(xiāo).某商場(chǎng)代理銷(xiāo)售某種空氣凈化器,其進(jìn)價(jià)是500元/臺(tái),經(jīng)過(guò)市場(chǎng)銷(xiāo)售后發(fā)現(xiàn),當(dāng)售價(jià)是1000元/臺(tái)時(shí),每月可售出50臺(tái),且售價(jià)每降低20元,每月就可多售出5臺(tái).若供貨商規(guī)定這種空氣凈化器售價(jià)不能低于600元/臺(tái),代理銷(xiāo)售商每月要完成不低于60臺(tái)的銷(xiāo)售任務(wù).
(1)試確定月銷(xiāo)售量y(臺(tái))與售價(jià)x(元/臺(tái))之間的函數(shù)關(guān)系式,并求出自變量x的取值范圍.
(2)當(dāng)售價(jià)x(元/臺(tái))定為多少時(shí),商場(chǎng)每月銷(xiāo)售這種空氣凈化器所獲得的利潤(rùn)w(元)最大?最大利潤(rùn)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB∥CD∥EF,BC∥AD,AC平分∠BAD,且與EF交于點(diǎn)O,那么與∠AOE相等的角有( )
A. 6個(gè)B. 5個(gè)C. 4個(gè)D. 3個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】教材在探索平方差公式時(shí)利用了面積法,面積法除了可以幫助我們記憶公式,還可以直觀地推導(dǎo)或驗(yàn)證公式,俗稱(chēng)“無(wú)字證明”,例如,著名的趙爽弦圖(如圖①,其中四個(gè)直角三角形較大的直角邊長(zhǎng)都為a,較小的直角邊長(zhǎng)都為b,斜邊長(zhǎng)都為c),大正方形的面積可以表示為c2 , 也可以表示為4×ab+(a-b)2由此推導(dǎo)出重要的勾股定理:如果直角三角形兩條直角邊長(zhǎng)為a,b,斜邊長(zhǎng)為c,則a2+b2=c2 .
(1)圖②為美國(guó)第二十任總統(tǒng)伽菲爾德的“總統(tǒng)證法”,請(qǐng)你利用圖②推導(dǎo)勾股定理.
(2)如圖③,直角△ABC中,∠ACB=90°,AC=3cm,BC=4cm,則斜邊AB上的高CD的長(zhǎng)為多少?
(3)試構(gòu)造一個(gè)圖形,使它的面積能夠解釋?zhuān)?/span>a+b)(a+2b)=a2+3ab+2b2 , 畫(huà)在如圖4的網(wǎng)格中,并標(biāo)出字母a、b所表示的線(xiàn)段.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠B=40°,∠C=80°,按要求完成下列各題:
(1)作△ABC的高AD;
(2)作△ABC的角平分線(xiàn)AE;
(3)根據(jù)你所畫(huà)的圖形求∠DAE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖①所示是一個(gè)長(zhǎng)為2m,寬為2n的長(zhǎng)方形,沿圖中虛線(xiàn)用剪刀均分成四個(gè)小長(zhǎng)方形,然后按圖②的方式拼成一個(gè)正方形。
(1)你認(rèn)為圖②中陰影部分的正方形的邊長(zhǎng)等于________.
(2)請(qǐng)用兩種不同的方法列代數(shù)式表示圖②中陰影部分的面積。
方法①___________________________________.
方法②___________________________________.
(3)觀察圖②,試寫(xiě)出,,這三個(gè)代數(shù)式之間的等量關(guān)系 .
(4)根據(jù)(3)題中的等量關(guān)系,解決如下問(wèn)題:若,,則求的值。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,CD是AB邊上的高,AC=4,BC=3,DB=
求:(1)求AD的長(zhǎng);
(2)△ABC是直角三角形嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù) y=kx+b 的圖象與坐標(biāo)軸分別交于 A、B 兩點(diǎn),與反比例函數(shù) y= 的圖象在第一象限的交點(diǎn)為點(diǎn) C,CD⊥x 軸,垂足為點(diǎn) D,若OB=3,OD=6,△AOB 的面積為 3.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)直接寫(xiě)出當(dāng) x>0 時(shí),kx+b﹣>0 的解集.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(-3,0),B(-3,-4),C(-1,-4).
(1)求△ABC的面積;
(2)在圖中作出△ABC關(guān)于x軸對(duì)稱(chēng)的圖形△DEF,點(diǎn)A、B、C的對(duì)稱(chēng)點(diǎn)分別為D、E、F,并寫(xiě)出D、E、F的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com