【題目】如圖,反比例函數(shù)與一次函數(shù)的圖象交于點(diǎn)A(-2,6)、點(diǎn)B(,1).
(1)求反比例函數(shù)與一次函數(shù)的表達(dá)式;
(2)點(diǎn)E為y軸上一個(gè)動(dòng)點(diǎn),若S△AEB=5,求點(diǎn)E的坐標(biāo).
(3)將一次函數(shù)的圖象沿軸向下平移n個(gè)單位,使平移后的圖象與反比例函數(shù)的圖象有且只有一個(gè)交點(diǎn),求n的值.
【答案】(1),(2)(0,6)或(0,8)(3)或
【解析】(1)利用待定系數(shù)法求兩函數(shù)的解析式;
(2)設(shè)點(diǎn)E的坐標(biāo)為(0,m),連接AE,BE,先求出點(diǎn)P的坐標(biāo)(0,7),得出PE=|m-7|,根據(jù)S△AEB=S△BEP-S△AEP=5,求出m的值,從而得出點(diǎn)E的坐標(biāo);
(3)設(shè)平移后的一次函數(shù)的解析式為y=,由=由題意,△=0,解方程即可.
(1)把點(diǎn)A(-2,6)代入反比例函數(shù)y=中,
得:k=-2×6=-12,
∴反比例函數(shù)解析式為:,
當(dāng)y=1時(shí), n=-12,
∴B(-12,1),
則,
解得:
∴一次函數(shù)的解析式為:y=x+7;
(2)設(shè)于y軸的交點(diǎn)為P,易得P(0,7),設(shè)E(0,m)
由題意,PE=|m7|.
則S△AEB= S△BEP-S△AEP,
得,
∴m1=6,m2=8.
∴點(diǎn)E的坐標(biāo)為(0,6)或(0,8).
(3)由題意得=
方程變形為
解得或
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】從南京站開往上海站的一輛和諧號動(dòng)車,中途只停靠蘇州站,甲、乙、丙3名互不相識(shí)的旅客同時(shí)從南京站上車.
(1)求甲、乙、丙三名旅客在同一個(gè)站下車的概率;
(2)求甲、乙、丙三名旅客中至少有一人在蘇州站下車的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,網(wǎng)格線的交點(diǎn)叫格點(diǎn),格點(diǎn)是的邊上的一點(diǎn)(請利用網(wǎng)格作圖,保留作圖痕跡).
(1)過點(diǎn)畫的垂線,交于點(diǎn);
(2)線段 的長度是點(diǎn)O到PC的距離;
(3)的理由是 ;
(4)過點(diǎn)C畫的平行線;
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD中,∠B=60°,點(diǎn)E在邊BC上,點(diǎn)F在邊CD上.若EB=2,DF=3,∠EAF=60°,則△AEF的面積等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y1=kx+b與雙曲線y2= 交于A、B兩點(diǎn),它們的橫坐標(biāo)分別為1和5.
(1)當(dāng)m=5時(shí),求直線AB的解析式及△AOB的面積;
(2)當(dāng)y1>y2時(shí),直接寫出x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,直線分別交x軸、y軸于A、B兩點(diǎn),點(diǎn)P是線段AB上的一動(dòng)點(diǎn),以P為圓心,r為半徑畫圓.
(1)若點(diǎn)P的橫坐標(biāo)為﹣3,當(dāng)⊙P與x軸相切時(shí),則半徑r為 ,此時(shí)⊙P與y軸的位置關(guān)系是 .(直接寫結(jié)果)
(2)若,當(dāng)⊙P與坐標(biāo)軸有且只有3個(gè)公共點(diǎn)時(shí),求點(diǎn)P的坐標(biāo).
(3)如圖2,當(dāng)圓心P與A重合,時(shí),設(shè)點(diǎn)C為⊙P上的一個(gè)動(dòng)點(diǎn),連接OC,將線段OC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)90°,得到線段OD,連接AD,求AD長的最值并直接寫出對應(yīng)的點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我們把形如x2=a(其中a是常數(shù)且a≥0)這樣的方程叫做x的完全平方方程.
如x2=9,(3x﹣2)2=25,…都是完全平方方程.
那么如何求解完全平方方程呢?
探究思路:
我們可以利用“乘方運(yùn)算”把二次方程轉(zhuǎn)化為一次方程進(jìn)行求解.
如:解完全平方方程x2=9的思路是:由(+3)2=9,(﹣3)2=9可得x1=3,x2=﹣3.
解決問題:
(1)解方程:(3x﹣2)2=25.
解題思路:我們只要把 3x﹣2 看成一個(gè)整體就可以利用乘方運(yùn)算進(jìn)一步求解方程了.
解:根據(jù)乘方運(yùn)算,得3x﹣2=5 或 3x﹣2= .
分別解這兩個(gè)一元一次方程,得x1=,x2=﹣1.
(2)解方程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知數(shù)軸上點(diǎn)A表示的數(shù)為10,點(diǎn)B在點(diǎn)A左邊,且AB=18.動(dòng)點(diǎn)P從點(diǎn)A出發(fā),以每秒5個(gè)單位長度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t(t>0)秒.
(1)寫出數(shù)軸上點(diǎn)B表示的數(shù),點(diǎn)P表示的數(shù)(用含t的代數(shù)式表示);
(2)動(dòng)點(diǎn)Q從點(diǎn)B出發(fā),以每秒3個(gè)單位長度的速度沿?cái)?shù)軸向左勻速運(yùn)動(dòng),若點(diǎn)P、Q同時(shí)出發(fā).
①問點(diǎn)P運(yùn)動(dòng)多少秒時(shí)追上點(diǎn)Q?
②問點(diǎn)P運(yùn)動(dòng)多少秒時(shí)與點(diǎn)Q相距4個(gè)單位長度?并求出此時(shí)點(diǎn)P表示的數(shù);
(3)若點(diǎn)P、Q以(2)中的速度同時(shí)分別從點(diǎn)A、B向右運(yùn)動(dòng),同時(shí)點(diǎn)R從原點(diǎn)O以每秒7個(gè)單位的速度向右運(yùn)動(dòng),是否存在常數(shù)m,使得2QR+3OP﹣mOR為定值,若存在請求出m值以及這個(gè)定值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示的圖形中,所有的四邊形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的邊長為7cm,則所有正方形的面積的和是( )cm2
A. 28 B. 49 C. 98 D. 147
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com