【題目】如圖,菱形ABCD中,∠B=60°,點(diǎn)E在邊BC上,點(diǎn)F在邊CD上.若EB=2,DF=3,∠EAF=60°,則△AEF的面積等于 .
【答案】
【解析】證明:如圖,連接AC,
∵在菱形ABCD中,∠D=60°,AD=DC,
∴△ADC是等邊三角形,
∵AC是菱形的對(duì)角線,
∴∠ACB= ∠DCB=60°,
∵∠FAC+∠EAC=∠FAC+∠DAF=60°,
∴∠EAC=∠DAF,
在△ADF和△ACE中,
∵ ,
∴△ADF≌△ACE(ASA),
∴DF=CE=3,AE=AF,BC=BE+CE=AB=5.
∴S四邊形AECF=S△ACD
= ×5×5×sin60°
= ,
如圖,過(guò)F作FG⊥BC于G,則
S△ECF= CECFsin∠GCF
= CECFsin60°
= 6
= ,
∴S△AEF=S四邊形AECF﹣S△ECF
= ﹣
= .
所以答案是: .
【考點(diǎn)精析】利用菱形的性質(zhì)和解直角三角形對(duì)題目進(jìn)行判斷即可得到答案,需要熟知菱形的四條邊都相等;菱形的對(duì)角線互相垂直,并且每一條對(duì)角線平分一組對(duì)角;菱形被兩條對(duì)角線分成四個(gè)全等的直角三角形;菱形的面積等于兩條對(duì)角線長(zhǎng)的積的一半;解直角三角形的依據(jù):①邊的關(guān)系a2+b2=c2;②角的關(guān)系:A+B=90°;③邊角關(guān)系:三角函數(shù)的定義.(注意:盡量避免使用中間數(shù)據(jù)和除法).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在數(shù)軸上點(diǎn)A、B、C表示的數(shù)分別為﹣2、1、6,點(diǎn)A與點(diǎn)B之間的距離表示為AB,點(diǎn)B與點(diǎn)C之間的距離表示為BC,點(diǎn)A與點(diǎn)C之間的距離表示為AC
(1)請(qǐng)直接寫出AB、BC、AC的長(zhǎng)度;
(2)若點(diǎn)D從A點(diǎn)出發(fā),以每秒1個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),點(diǎn)E從B點(diǎn)出發(fā)以每秒2個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng),點(diǎn)F從C點(diǎn)出發(fā)以每秒5個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng).設(shè)點(diǎn)D、E、F同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為t秒,試探索:EF﹣DE的值是否隨著時(shí)間t的變化而變化?請(qǐng)說(shuō)明理由.
(3)若點(diǎn)M以每秒4個(gè)單位的速度從A點(diǎn)出發(fā),點(diǎn)N以每秒3個(gè)單位的速度運(yùn)動(dòng)從C點(diǎn)出發(fā),設(shè)點(diǎn)M、N同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為t秒,試探究:經(jīng)過(guò)多少秒后,點(diǎn)M、N兩點(diǎn)間的距離為14個(gè)單位.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中.過(guò)一點(diǎn)分別作坐標(biāo)軸的垂線,若與坐標(biāo)軸圍成矩形的周長(zhǎng)的數(shù)值與面積的數(shù)值相等,則這個(gè)點(diǎn)叫做和諧點(diǎn).例如.圖中過(guò)點(diǎn)P分別作x軸,y軸的垂線.與坐標(biāo)軸圍成矩形OAPB的周長(zhǎng)的數(shù)值與面積的數(shù)值相等,則點(diǎn)P是和諧點(diǎn).
(1)判斷點(diǎn)M(1,2),N(4,4)是否為和諧點(diǎn),并說(shuō)明理由;
(2)若和諧點(diǎn)P(a,3)在直線y=﹣x+b(b為常數(shù))上,求a,b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校允許學(xué)生在同個(gè)系列的校服里選擇不同款式,新生入學(xué)后,學(xué)校就新生對(duì)校服款式選擇情況作了抽樣調(diào)查,調(diào)查分為款式A、B、C、D四種,每位新生只能選擇一種款式,現(xiàn)將調(diào)查統(tǒng)計(jì)結(jié)果制成了如下兩幅不完整的統(tǒng)計(jì)圖,請(qǐng)結(jié)合這兩幅統(tǒng)計(jì)圖,回答下列問(wèn)題:
(1)在本次調(diào)查中,一共抽取了多少名新生,并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)若該校有847名新生,服裝廠已生產(chǎn)了270套B款式的校服,請(qǐng)你按相關(guān)統(tǒng)計(jì)知識(shí)判斷是否還要繼續(xù)生產(chǎn)B款式的校服?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,港口A在觀測(cè)站O的正東方向,OA=6km,某船從港口A出發(fā),沿北偏東15°方向航行一段距離后到達(dá)B處,此時(shí)從觀測(cè)站O處測(cè)得該船位于北偏東60°的方向,則該船航行的距離(即AB的長(zhǎng))為( )
A.3 km
B.3 km
C.4 km
D.(3 ﹣3)km
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是△ABC的內(nèi)切圓,切點(diǎn)為D,E,F,若AD、BE的長(zhǎng)為方程的兩個(gè)根,則△ABC的周長(zhǎng)為 ______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,反比例函數(shù)與一次函數(shù)的圖象交于點(diǎn)A(-2,6)、點(diǎn)B(,1).
(1)求反比例函數(shù)與一次函數(shù)的表達(dá)式;
(2)點(diǎn)E為y軸上一個(gè)動(dòng)點(diǎn),若S△AEB=5,求點(diǎn)E的坐標(biāo).
(3)將一次函數(shù)的圖象沿軸向下平移n個(gè)單位,使平移后的圖象與反比例函數(shù)的圖象有且只有一個(gè)交點(diǎn),求n的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知∠EOC=110°,將角的一邊OE繞點(diǎn)O旋轉(zhuǎn),使終止位置OD和起始位置OE成一條直線,以點(diǎn)O為中心將OC順時(shí)針旋轉(zhuǎn)到OA,使∠COA=∠DOC,過(guò)點(diǎn)O作∠COA的平分線OB.
(1)借助量角器、直尺補(bǔ)全圖形;
(2)求∠BOE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線l1在平面直角坐標(biāo)系中,直線l1與y軸交于點(diǎn)A,點(diǎn)B(-3,3)也在直線l1上,將點(diǎn)B先向右平移1個(gè)單位長(zhǎng)度,再向下平移2個(gè)單位長(zhǎng)度得到點(diǎn)C,點(diǎn)C恰好也在直線l1上.
(1)求點(diǎn)C的坐標(biāo)和直線l1的解析式;
(2)已知直線l2:y=x+b經(jīng)過(guò)點(diǎn)B,與y軸交于點(diǎn)E,求△ABE的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com