【題目】已知的三條邊長分別為6,8,12,過任一頂點畫一條直線,將分割成兩個三角形,使其中的一個是等腰三角形,則這樣的直線最多可畫(

A.6B.7C.8D.9

【答案】B

【解析】

不妨設AB=6,AC=8BC=12,分別作三邊的垂直平分線,則可得三條,再分以AB、AC為腰和底進行討論,可得出結論.

解:不妨設AB=6,AC=8,BC=12,分別作三邊的垂直平分線,
如圖1,則BD=AD,EA=EC,FB=FC,可知AE、BF、AD滿足條件;

AB為腰時,以點A為圓心,AB為半徑畫圓,分別交BC、AC于點G、H,
B為圓心,AB為半徑,交BC于點J,如圖2,則AB=AGAB=AH,BA=BJ,滿足條件;

AC為腰時,如圖3,以點C為圓心,CA為半徑畫圓,交BC于點M,則CA=CM,滿足條件;

A為圓心AC為半徑畫圓時,與ABBC都沒有交點,
因為BC為最長的邊,所以不可能存在以BC為腰的等腰三角形,
綜上可知滿足條件的直線共有7.
故選B

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】已知:如圖,平行四邊形ABCD中,M、N分別為ABCD的中點.

1)求證:四邊形AMCN是平行四邊形;

2)當ACBC滿足怎樣的數(shù)量關系時,四邊形AMCN是矩形,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點D的坐標是(﹣3,1),點A的坐標是(4,3).

(1)點B和點C的坐標分別是______、______.

(2)將△ABC平移后使點C與點D重合,點A、B與點E、F重合,畫出△DEF.并直接寫出E、F的坐標.

(3)若AB上的點M坐標為(x,y),則平移后的對應點M′的坐標為______.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,小瑩用一張長方形紙片ABCD進行折紙,已知該紙片寬AB8cm,BC10cm.當小瑩折疊時,頂點D落在BC邊上的點F處(折痕為AE).

求(1BF的長;

2EF的長

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是某品牌太陽能熱水器的實物圖和橫斷面示意圖,已知真空集熱管AB與支架CD所在直線相交于水箱橫斷面⊙O的圓心O,支架CD與水平面AE垂直,AB=150厘米,∠BAC=30°,另一根輔助支架DE=40厘米,∠CED=60°

1)求垂直支架CD的長度;

2)求水箱半徑OD的長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀與思考;

婆羅摩笈多是一位印度數(shù)學家與天文學家,書寫了兩部關于數(shù)學與天文的書籍,他的一些數(shù)學成就在世界數(shù)學史上有較高的地位,他的負數(shù)及加減法運算僅晚于中國九章算術而他的負數(shù)乘除法法則在全世界都是領先的,他還提出了著名的婆羅摩笈多定理,該定理的內(nèi)容及證明如下:

已知:如圖,四邊形ABCD內(nèi)接與圓O對角線ACBD于點MMEBC于點E,延長EMCDF,求證:MF=DF

證明∵ACBD,MEBC

∴∠CBD=CME

∵∠CBD=CAD,CME=AMF

∴∠CAD=AMF

AF=MF

∵∠AMD=90°,同時∠MAD+MDA=90°

∴∠FMD=FDM

MF=DF,即FAD中點.

1)請你閱讀婆羅摩笈多定理的證明過程,完成婆羅摩笈多逆定理的證明:

已知:如圖1,四邊形ABCD內(nèi)接與圓O,對角線ACBD于點M,FAD中點,連接FM并延長交BC于點E,求證:MEBC

2)已知如圖2,ABC內(nèi)接于圓O,B=30°ACB=45°,AB=2,點D在圓O上,∠BCD=60°,連接AD BC于點P,作ONCD于點N,延長NPAB于點M,求證PMBA并求PN的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線、相交于點平分,.

(1)若∠AOF=50°,求∠BOE的度數(shù);

(2)若∠BOD:BOE=1:4,求∠AOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】各地廣場舞噪音干擾的問題備受關注,相關人員對本地區(qū)15~65歲年齡段的500名市民進行了隨機調(diào)查,在調(diào)查過程中對廣場舞噪音干擾的態(tài)度有以下五種:A.沒影響;B.影響不大;C.有影響,建議做無聲運動;D.影響很大,建議取締;E.不關心這個問題,將調(diào)查結果統(tǒng)計整理并繪制成如下兩幅不完整的統(tǒng)計圖.

請根據(jù)以上信息解答下列問題:

(1)填空m=________,態(tài)度為C所對應的圓心角的度數(shù)為________;

(2)補全條形統(tǒng)計圖;

(3)若全區(qū)15~65歲年齡段有20萬人,估計該地區(qū)對廣場舞噪音干擾的態(tài)度為B的市民人數(shù);

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】三點在數(shù)軸上,點表示的數(shù)是,從點出發(fā)向右平移7個單位長度得到點

1)求出點表示的數(shù),畫一條數(shù)軸并在數(shù)軸上標出點和點;

2)若此數(shù)軸在一張紙上,將紙沿某一條直線對折,此時點與表示數(shù)的點剛好重合,折痕與數(shù)軸有一個交點,求點表示的數(shù)的相反數(shù)(原卷無此問);

3)在數(shù)軸上有一點,點到點和點的距離之和為11,求點所表示的數(shù);

4從初始位置分別以1單位長度2單位長度的速度同時向左運動,是否存在的值,使秒后點的距離與點到原點距離相等?若存在請求出的值;若不存在,請說明理由。

查看答案和解析>>

同步練習冊答案