【題目】如圖,已知∠AOB=90°,射線OA繞點(diǎn)O逆時(shí)針方向以每秒6°的速度旋轉(zhuǎn)(當(dāng)旋轉(zhuǎn)角度等于360°時(shí),OA停止旋轉(zhuǎn)),同時(shí)OB繞點(diǎn)O以每秒2°的速度旋轉(zhuǎn)(當(dāng)OA停止旋轉(zhuǎn)時(shí),OB同樣停止旋轉(zhuǎn)).求當(dāng)OA旋轉(zhuǎn)多少秒,旋轉(zhuǎn)后的OA與OB形成的角度為50°.
【答案】(1)①x=10 ②x=35; (2)當(dāng)OA旋轉(zhuǎn)5秒或10秒或17.5秒或35或50秒時(shí),與OB形成角度為50°.
【解析】
試題(1)當(dāng)OB逆時(shí)針旋轉(zhuǎn):設(shè)OA旋轉(zhuǎn)x秒后與OB形成角度為,①OA未追上OB,②當(dāng)OA超過OB,列方程即可得到結(jié)論;
(2)當(dāng)OB順時(shí)針旋轉(zhuǎn):設(shè)OA旋轉(zhuǎn)x秒后與OB形成角度為,①OA與OB相遇前,②OA與OB相遇后,列方程即可得到結(jié)論.
解:(1)當(dāng)OB逆時(shí)針旋轉(zhuǎn):設(shè)OA旋轉(zhuǎn)x秒后與OB形成角度為50°
①OA未追上OB
50-2x+6x=90,解得 x=10
②當(dāng)OA超過OB
6x-90=50+2x
解得 x=35
(2)當(dāng)OB順時(shí)針旋轉(zhuǎn):設(shè)OA旋轉(zhuǎn)x秒后與OB形成角度為50°
①OA與OB相遇前
2x+6x+50=90
解得 x=5
②OA與OB相遇后
6x+2x-50=90
解得 x=17.5
或6x+2x-90+50=360
解得 x=50
綜上所述:當(dāng)OA旋轉(zhuǎn)5秒或10秒或17.5秒或35或50秒時(shí),與OB形成角度為50°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某市為了節(jié)約用水,對(duì)自來水的收費(fèi)標(biāo)準(zhǔn)作如下規(guī)定:每月每戶用水不超過10噸的部分,按2元/噸收費(fèi);超過10噸的部分按2.5元/噸收費(fèi).
(1)若黃老師家5月份用水16噸,問應(yīng)交水費(fèi)多少元?
(2)若黃老師家6月份交水費(fèi)30元,問黃老師家5月份用水多少噸?
(3)若黃老師家7月用水a噸,問應(yīng)交水費(fèi)多少元?(用a的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2016年G20杭州峰會(huì)期間,某志愿者小組有五名翻譯,其中一名只會(huì)翻譯法語,三名只會(huì)翻譯英語,還有一名兩種語言都會(huì)翻譯.若從中隨機(jī)挑選兩名組成一組,則該組能夠翻譯上述兩種語言的概率是多少?(請(qǐng)用“畫樹狀圖”的方法給出分析過程,并求出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的弦,OB=2,∠B=30°,C是弦AB上的任意一點(diǎn) (不與點(diǎn)A、B重合),連接CO并延長CO交⊙O于點(diǎn)D,連接AD.
(1)弦長AB等于(結(jié)果保留根號(hào));
(2)當(dāng)∠D=20°時(shí),求∠BOD的度數(shù);
(3)當(dāng)AC的長度為多少時(shí),以A、C、D為頂點(diǎn)的三角形與以B、C、0為頂點(diǎn)的三角形相似?請(qǐng)寫出解答過程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知直線AB上一點(diǎn)O,OC⊥AB,OD⊥OE, 若∠COE=∠BOD.
(1)求∠COE, ∠BOD, ∠AOE的度數(shù).
(2)若OF平分∠BOE,求∠AOF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形OABC是平行四邊形,邊OC在x軸的負(fù)半軸上,反比例y= (k<0)的圖象經(jīng)過點(diǎn)A與BC的中點(diǎn)F,連接AF、OF,若△AOF的面積為9,則k的值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小華在A處利用高為1.5米的測角儀AB測得樓EF頂部E的仰角為30°,然后前進(jìn)30米到達(dá)C處,又測得頂部E的仰角為60°,求大樓EF的高度.(結(jié)果精確到0.1米,參考數(shù)據(jù) =1.732)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線AB與CD相交于O,OE⊥AB,OF⊥CD。
(1)圖中與∠COE互補(bǔ)的角是___________________; (把符合條件的角都寫出來)
(2)如果∠AOC =∠EOF ,求∠AOC的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形網(wǎng)格中(網(wǎng)格中的每個(gè)小正方形邊長是1),△ABC的頂點(diǎn)均在格點(diǎn)上,請(qǐng)?jiān)谒o的直角坐標(biāo)系中解答下列問題:
(1)作出△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°的△AB1C1,再作出△AB1C1關(guān)于原點(diǎn)O成中心對(duì)稱的△A1B2C2.
(2)點(diǎn)B1的坐標(biāo)為 ,點(diǎn)C2的坐標(biāo)為 .
(3)△ABC經(jīng)過怎樣的旋轉(zhuǎn)可得到△A1B2C2, .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com