【題目】(2016湖南省株洲市)某市對初二綜合素質(zhì)測評中的審美與藝術進行考核,規(guī)定如下:考核綜合評價得分由測試成績(滿分100分)和平時成績(滿分100分)兩部分組成,其中測試成績占80%,平時成績占20%,并且當綜合評價得分大于或等于80分時,該生綜合評價為A等.
(1)孔明同學的測試成績和平時成績兩項得分之和為185分,而綜合評價得分為91分,則孔明同學測試成績和平時成績各得多少分?
(2)某同學測試成績?yōu)?/span>70分,他的綜合評價得分有可能達到A等嗎?為什么?
(3)如果一個同學綜合評價要達到A等,他的測試成績至少要多少分?
【答案】(1)孔明同學測試成績位90分,平時成績?yōu)?5分;(2)不可能;(3)他的測試成績應該至少為75分.
【解析】
試題(1)分別利用孔明同學的測試成績和平時成績兩項得分之和為185分,而綜合評價得分為91分,分別得出等式求出答案;
(2)利用測試成績占80%,平時成績占20%,進而得出答案;
(3)首先假設平時成績?yōu)闈M分,進而得出不等式,求出測試成績的最小值.
試題解析:(1)設孔明同學測試成績?yōu)?/span>x分,平時成績?yōu)?/span>y分,依題意得:,解之得:.
答:孔明同學測試成績位90分,平時成績?yōu)?/span>95分;
(2)由題意可得:80﹣70×80%=24,24÷20%=120>100,故不可能.
(3)設平時成績?yōu)闈M分,即100分,綜合成績?yōu)?/span>100×20%=20,設測試成績?yōu)?/span>a分,根據(jù)題意可得:20+80%a≥80,解得:a≥75.
答:他的測試成績應該至少為75分.
科目:初中數(shù)學 來源: 題型:
【題目】某物流公司要同時運輸A、B兩種型號的商品共13件,A型商品每件體積為2m3 , 每件質(zhì)量為1噸;B型商品每件體積為0.8m3 , 每件質(zhì)量為0.5噸,這兩種型號商品體積之和不超過18.8m3 , 質(zhì)量之和大于8.5噸.
(1)求A、B兩種型號商品的件數(shù)共有幾種可能?寫出所有可能情況;
(2)若一件A型商品運費為200元,一件B型商品運費為180元.則(1)中哪種情況的運費最少?最少運費是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,∠ABC的兩邊分別平行于∠DEF的兩條邊,且∠ABC=45°.
圖1 圖2
(1)圖1中:∠DEF=_________,圖2中:∠DEF=_________;
(2)請觀察圖1、圖2中∠DEF分別與∠ABC有怎樣的關系,請你歸納出一個命題.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某商場計劃撥款9萬元從廠家購進50臺電視機,已知該廠家生產(chǎn)三種不同型號的電視機,出廠價分別為:甲種每臺1500元,乙種每臺2100元,丙種每臺2500元,若商場同時購進其中兩種不同型號電視機共50臺,用去9萬元,請你研究一下商場的進貨方案.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在我縣中小學讀書活動中,某校對部分學生做了一次主題為“我最喜愛的圖書”的調(diào)查活動,將圖書分為甲、乙、丙、丁四類,學生可根據(jù)自己的愛好任選其中一類,學校根據(jù)調(diào)查情況進行了統(tǒng)計,并繪制了不完整條形統(tǒng)計圖和扇形統(tǒng)計圖.
請你結合圖中的信息,解答下列問題(其中(1)、(2)直接填答案即可);
(1)本次調(diào)查了 名學生;
(2)被調(diào)查的學生中,最喜愛丁類圖書的有 人,最喜愛甲類圖書的人數(shù)被調(diào)查人數(shù)的 %.
(3)在最喜愛丙類圖書的學生中,女生人數(shù)是男生人數(shù)的1.5倍,若這所學校約有學生1800人,請你估計該校最喜愛丙類圖書的女生和男生分別有多少人.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,長方形OABC中,O為平面直角坐標系的原點,A點的坐標為,C點的坐標為,點B在第一象限內(nèi),點P從原點出發(fā),以每秒2個單位長度的速度沿著的路線移動即:沿著長方形移動一周.
寫出點B的坐標______
當點P移動了4秒時,描出此時P點的位置,并求出點P的坐標.
在移動過程中,當點P到x軸距離為5個單位長度時,求點P移動的時間.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,點A,B的坐標分別為A(a,0),B(n,0)且a、n滿足|a+2|+=0,現(xiàn)同時將點A,B分別向上平移4個單位,再向右平移3個單位,分別得到點A,B的對應點C,D,連接AC,BD,CD.
(1)求點C,D的坐標及四邊形OBDC的面積;
(2)如圖2,若 點P是線段BD上的一個動點,連接PC,PO,當點P在BD上移動時(不與B,D重合)的值是否發(fā)生變化,并說明理由.
(3)在四邊形OBDC內(nèi)是否存在一點P,連接PO,PB,PC,PD,使S△PCD=S△PBD; S△POB:S△POC=1?若存在這樣一點,求出點P的坐標,若不存在,試說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將Rt△ABC沿某條直線折疊,使斜邊的兩個端點A與B重合,折痕為DE.
(1)如果AC=6cm,BC=8cm,試求△ACD的周長;
(2)如果∠CAD:∠BAD=1:2,求∠B的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知△ABC的三個頂點的坐標分別為A(﹣5,0)、B(﹣2,3)、C(﹣1,0)
(1)畫出△ABC關于坐標原點O成中心對稱的△A1B1C1;
(2)將△ABC繞坐標原點O順時針旋轉(zhuǎn)90°,畫出對應的△A′B′C′,
(3)若以A′、B′、C′、D′為頂點的四邊形為平行四邊形,請直接寫出在第四象限中的D′坐標 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com