【題目】如圖,直線ABx軸交于點A10),與y軸交于點B0﹣2).

1)求直線AB的解析式;

2)若直線AB上的點C在第一象限,且SBOC=2,求點C的坐標(biāo).

【答案】1直線AB的解析式為y=2x﹣2;(2C的坐標(biāo)是(2,2.

【解析】試題分析:1)設(shè)直線的解析式為 將點分別代入解析式即可組成方程組,從而得到的解析式;
2)設(shè)點的坐標(biāo)為 根據(jù)三角形面積公式以及求出的橫坐標(biāo),再代入直線即可求出的值,從而得到其坐標(biāo).

試題解析:(1)設(shè)直線AB的解析式為y=kx+b(k≠0).

∵直線AB過點A(1,0)、點B(0,2),

解得

∴直線AB的解析式為y=2x2.

(2)設(shè)點C的坐標(biāo)為(x,y)

解得x=2,

∵直線AB的解析式為y=2x2,

∴當(dāng)x=2時,y=2×22=2,

∴點C的坐標(biāo)是(2,2).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,菱形ABCD中,∠A=60°,點PA出發(fā),以2cm/s的速度沿邊AB、BC、CD勻速運動到D終止,點QAP同時出發(fā),沿邊AD勻速運動到D終止,設(shè)點P運動的時間為ts).△APQ的面積Scm2)與ts)之間函數(shù)關(guān)系的圖象由圖2中的曲線段OE與線段EF、FG給出.

1)求點Q運動的速度;

2)求圖2中線段FG的函數(shù)關(guān)系式;

3)問:是否存在這樣的t,使PQ將菱形ABCD的面積恰好分成15的兩部分?若存在,求出這樣的t的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知四邊形 ABCD , AB⊥AD,BC⊥CD,AB=BC,∠ABC=1200,∠MBN=600,∠MBN 繞點B 旋轉(zhuǎn)當(dāng)∠MBN 旋轉(zhuǎn)到如圖的位置,此時∠MBN 的兩邊分別交 AD、DC E、F,AE≠CF.延長 DC 至點 K,使 CK=AE,連接BK.

求證:(1)△ABE≌△CBK;(2)∠KBC+∠CBF=600 ;(3)CF+AE=EF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】因式分解:(x+2)x﹣x﹣2=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我國漢代數(shù)學(xué)家趙爽為了證明勾股定理,創(chuàng)制了一副弦圖,后人稱其為趙爽弦圖(如圖1).圖2由弦圖變化得到,它是由八個全等的直角三角形拼接而成.記圖中正方形ABCD,正方形EFGH,正方形MNKT的面積分別為S1,S2S3,若S1+S2+S3=10,則S2的值是_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點P、Q分別是邊長為4cm的等邊ABC邊AB、BC上的動點,點P從頂點A,點Q從頂點B同時出發(fā),且它們的速度都為1cm/s,下面四個結(jié)論正確的有________________

BP=CM;②△ABQ≌△CAP③∠CMQ的度數(shù)不變,始終等于60°;④當(dāng)?shù)?/span>秒或第秒時,PBQ為直角三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若點P(m,n)在第二象限,則點Q(-m,-n)在( 。

A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若∠A和∠B的兩邊分別平行,且∠A比∠B的兩倍少30°,則∠B的度數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,8×6正方形方格中A、B、C在小正方形的頂點上

1)在圖中畫出與ABC關(guān)于直線成軸對稱的ABC,并回答問題

圖中線段CC被直線l ;

2)在直線l上找一點D,使線段DB+DC最短.(不寫作法應(yīng)保留作圖痕跡)

3在直線l確定一點P,使得|PA-PB|的值最小.(不寫作法,應(yīng)保留作圖痕跡)

查看答案和解析>>

同步練習(xí)冊答案