【題目】已知:如圖,已知△ABC,
(1)分別畫出與△ABC關(guān)于軸對(duì)稱的圖形△A1B1C1 ,
(2)寫出 △A1B1C1各頂點(diǎn)坐標(biāo); A1( , )B1( , )C1( , )
(3)△ABC的面積= 。
(4)在x軸上找一點(diǎn)p,使點(diǎn)p到點(diǎn)A的距離和點(diǎn)C的距離最短。
【答案】(1)見詳解;(2)A1(0,-2),B1(-2,-4),C1(-4,-1);(3)5;(4)見詳解
【解析】
(1)分別作出各點(diǎn)關(guān)于y軸的對(duì)稱點(diǎn),再順次連接;
(2)由各點(diǎn)在坐標(biāo)系中的位置寫出各點(diǎn)坐標(biāo)即可;
(3)利用四邊形的面積減去三個(gè)頂點(diǎn)上三角形的面積即可;
(4)利用軸對(duì)稱的性質(zhì),找出A的對(duì)稱點(diǎn)A′,連接C A′,與x軸交點(diǎn)即為P.
解:(1)關(guān)于y軸的圖形如圖所示;
(2)由圖可知,A1(0,-2),B1(-2,-4),C1(-4,-1);
(3)S△ABC=3×4-×2×3-×4×1-×2×2=12-3-2-2=5.
(4)如圖所示
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,∠BAC與∠ACD的角平分線交于點(diǎn)E,且AC=13,AE=5,則AB與CD之間的距離是( )
A.7B.8C.D.9
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC=6cm,∠B=∠C,BC=4cm,點(diǎn)D為AB的中點(diǎn).
(1)如果點(diǎn)P在線段BC上以1cm/s的速度由點(diǎn)B向點(diǎn)C運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段CA上由點(diǎn)C向點(diǎn)A運(yùn)動(dòng).當(dāng)點(diǎn)Q的運(yùn)動(dòng)速度為多少時(shí),能夠使△BPD與△CQP全等?
(2)若點(diǎn)Q以1.5cm/s的運(yùn)動(dòng)速度從點(diǎn)C出發(fā),點(diǎn)P以原來的運(yùn)動(dòng)速度從點(diǎn)B同時(shí)出發(fā),都逆時(shí)針沿△ABC三邊運(yùn)動(dòng),則經(jīng)過_____秒后,點(diǎn)P與點(diǎn)Q第一次在△ABC的AC邊上相遇?(在橫線上直接寫出答案,不必書寫解題過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面的材料,回答問題:
解方程,這是一個(gè)一元四次方程,根據(jù)該方程的特點(diǎn),它的解法通常是:
設(shè),那么,于是原方程可變?yōu)?/span>①,解得,.
當(dāng)時(shí),,∴;
當(dāng)時(shí),,∴;
∴原方程有四個(gè)根:,,,.
在由原方程得到方程①的過程中,利用________法達(dá)到________的目的,體現(xiàn)了數(shù)學(xué)的轉(zhuǎn)化思想.
解方程.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一玩具城以元/個(gè)的價(jià)格購(gòu)進(jìn)某種玩具進(jìn)行銷售,并預(yù)計(jì)當(dāng)售價(jià)為元/個(gè)時(shí),每天能售出個(gè)玩具,且在一定范圍內(nèi),當(dāng)每個(gè)玩具的售價(jià)平均每提高元時(shí),每天就會(huì)少售出個(gè)玩具
若玩具售價(jià)不超過元/個(gè),每天售出玩具總成本不高于元,預(yù)計(jì)每個(gè)玩具售價(jià)的取值范圍;
在實(shí)際銷售中,玩具城以中每個(gè)玩具的最低售價(jià)及相應(yīng)的銷量為基礎(chǔ),進(jìn)一步調(diào)整了銷售方案,將每個(gè)玩具的售價(jià)提高了,從而每天的銷售量降低了,當(dāng)每天的銷售利潤(rùn)為元時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AD∥BC (BC>AD),∠D=90°,∠ABE=45°,BC=CD,
若AE=5,CE=2,則BC的長(zhǎng)度為_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,D為AB邊上一點(diǎn).
(1)求證:△ACE≌△BCD;
(2)若AD=5,BD=12,求DE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下圖是投影儀安裝截面圖.教室高EF=3.5 m,投影儀A發(fā)出的光線夾角∠BAC=30°,投影屏幕高BC=1.2 m.固定投影儀的吊臂AD=0.5 m,且AD⊥DE,AD∥EF,∠ACB=45°.求屏幕下邊沿離地面的高度CF(結(jié)果精確到0.1 m).
(參考數(shù)據(jù):tan15°≈0.27,tan30°≈0.58)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,臺(tái)風(fēng)中心位于點(diǎn),并沿東北方向移動(dòng),已知臺(tái)風(fēng)移動(dòng)的速度為40千米/時(shí),受影響區(qū)域的半徑為260千米,市位于點(diǎn)的北偏東75°方向上,距離點(diǎn)480千米.
(1)說明本次臺(tái)風(fēng)是否會(huì)影響市;
(2)若這次臺(tái)風(fēng)會(huì)影響市,求市受臺(tái)風(fēng)影響的時(shí)間.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com