【題目】如圖,在△ABC中,AB=BC,D是AC中點,BE平分∠ABD交AC于點E,點O是AB上一點,⊙O過B、E兩點,交BD于點G,交AB于點F.
(1)判斷直線AC與⊙O的位置關(guān)系,并說明理由;
(2)當(dāng)BD=6,AB=10時,求⊙O的半徑.
【答案】(1)AC與⊙O相切;(2).
【解析】試題分析:(1)連結(jié)OE,如圖,由BE平分∠ABD得到∠OBE=∠DBO,加上∠OBE=∠OEB,則∠OBE=∠DBO,于是可判斷OE∥BD,再利用等腰三角形的性質(zhì)得到BD⊥AC,所以OE⊥AC,于是根據(jù)切線的判定定理可得AC與⊙O相切;
(2)設(shè)⊙O半徑為r,則AO=10﹣r,證明△AOE∽△ABD,利用相似比得到,然后解方程求出r即可.
試題解析:(1)AC與⊙O相切.理由如下:
連結(jié)OE,如圖,
∵BE平分∠ABD,
∴∠OBE=∠DBO,
∵OE=OB,
∴∠OBE=∠OEB,
∴∠OBE=∠DBO,
∴OE∥BD,
∵AB=BC,D是AC中點,
∴BD⊥AC,
∴OE⊥AC,
∴AC與⊙O相切;
(2)設(shè)⊙O半徑為r,則AO=10﹣r,
由(1)知,OE∥BD,
∴△AOE∽△ABD,
∴,即,
∴r=,
即⊙O半徑是.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“2019寧波國際山地馬拉松賽”于2019年3月31日在江北區(qū)舉行,小林參加了環(huán)繞湖8km的迷你馬拉松項目(如圖1),上午8:00起跑,賽道上距離起點5km處會設(shè)置飲水補給站,在比賽中,小林勻速前行,他距離終點的路程s(km)與跑步的時間t(h)的函數(shù)圖象的一部分如圖2所示
(1)求小林從起點跑向飲水補給站的過程中與t的函數(shù)表達(dá)式
(2)求小林跑步的速度,以及圖2中a的值
(3)當(dāng)跑到飲水補給站時,小林覺得自己跑得太悠閑了,他想挑戰(zhàn)自己在上午8:55之前跑到終點,那么接下來一段路程他的速度至少應(yīng)為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于A,B兩點(點B在點A的左側(cè)),與y軸交于點C,頂點為D,其對稱軸與軸交于點E,聯(lián)接AD,OD.
(1)求頂點D的坐標(biāo)(用含的式子表示);
(2)若OD⊥AD,求該拋物線的函數(shù)表達(dá)式;
(3)在(2)的條件下,設(shè)動點P在對稱軸左側(cè)該拋物線上,PA與對稱軸交于點M,若△AME與△OAD相似,求點P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點E是正方形ABCD的邊CD上一點(不與C、D重合),連接AE,過點A作AF⊥AE交CB的延長線于點F
(1)求證:AE=AF;
(2)連接EF,N為EF之中點,連接BN,求的值;
(3)以BF為邊作正方形BFMH,如圖2,CH與AF相交于點Q,當(dāng)E在CD上運動(不與C、D重合),問∠CQD的大小是否發(fā)生變化?若不變,求其值;若變化,請指出其范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,O為直線AB上一點,過點O在直線AB的上方作射線OC,∠AOC=30°,將一個含30°(∠M=30°)的直角三角板的直角頂點放在點O處,邊ON在射線OA上,另一邊OM在直線AB的上方.
(1)將圖1中的三角板繞點O以每秒2°的速度沿順時針方向轉(zhuǎn)動一周的過程中.如圖2,經(jīng)過t秒后,OM恰好平分∠BOC.求t的值.
(2)在(1)問的條件下,若三角板在轉(zhuǎn)動的同時射線OC也繞O點以每秒5°的速度沿順動一周的過程中,如圖3,那么經(jīng)過多長時間直線OC平分∠MON?請直接寫出結(jié)果.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形ABCD的邊長是4,點P是AD邊的中點,點E是正方形邊上的一點,若△PBE是等腰三角形,則腰長為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】出租車司機小李國慶長假期間的某天下午的營運全是在南北走向的城區(qū)市心路上進(jìn)行的,如果規(guī)定向南行駛為正,他這天下午行車的里程(單位:千米)如下:
+8,﹣6,﹣5,+10,﹣5,+3,﹣2,+6,+2,﹣5
(1)小李下午出發(fā)地記為0,他將最后一名乘客送抵目的地時,小李距下午出發(fā)地有多遠(yuǎn)?
(2)如果汽車耗油量為0.4升/千米,油價每升5.80元,那么這天下午汽車共需花費油價為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,∠A=30°,AC=4,M是AB邊上一動點,N是AC邊上的一動點,則MN+MC的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校全體同學(xué)參加了某項捐款活動,隨機抽查了部分同學(xué)捐款的情況,并統(tǒng)計繪制成了如圖兩幅不完整的條形統(tǒng)計圖和扇形統(tǒng)計圖,請根據(jù)所提供的信息,解答下列問題:
(1)本次共抽查學(xué)生 人,并將條形圖補充完整:
(2)捐款金額的眾數(shù)是 元,中位數(shù)是 元;
(3)若該校共有2000名學(xué)生參加捐款,根據(jù)樣本平均數(shù)估計該校大約可捐款多少元?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com