【題目】某中學為促進陽光體育運動發(fā)展,計劃購進足球、排球充實體育器材,若購買足球30個、排球20個,共需資金2600元,若購買足球40個、排球30個,共需資金3600元.
(1)求足球、排球的價格分別是多少元?
(2)若該校計劃購進這兩種球的總數是60個,學校至多能夠提供資金2800元,求最多能購買足球多少個?
【答案】(1)足球的單價為60元,排球的單價為40元;(2)最多能購買20個足球.
【解析】
(1)設足球的單價為x元/個,籃球的單價為y元/個,根據購買足球30個、排球20個,共需資金2600元,若購買足球40個、排球30個,共需資金3600元即可得出關于x、y的二元一次方程組,解之即可得出結論;
(2)設購買足球x個,則購買籃球(50-x)個,根據總價=單價×數量,結合總資金不超過2800元,即可得出關于x的一元一次不等式,解之即可得出x的取值范圍,取其最大值即可.
解:(1)設足球、排球的單價分別為元,元,依題意得:
解得
即足球的單價為60元,排球的單價為40元.
(2)設購買足球個,則購買排球為個,依題得:
解得:
即最多能購買20個足球.
科目:初中數學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點E為線段OB上一點(不與O,B重合),作EC⊥OB,交⊙O于點C,作直徑CD,過點C的切線交DB的延長線于點P,作AF⊥PC于點F,連接CB.
(1)求證:AC平分∠FAB;
(2)求證:BC2=CECP;
(3)當AB=4且=時,求劣弧的長度.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小明想知道一堵墻上點A的高度(AO⊥OD),但又沒有直接測量的工具,于是設計了下面的方案,請你先補全方案,再說明理由.
第一步:找一根長度大于OA的直桿,使直桿靠在墻上,且頂端與點A重合,記下直桿與地面的夾角∠ABO;
第二步:使直桿頂端豎直緩慢下滑,直到∠ =∠ .標記此時直桿的底端點D;
第三步:測量 的長度,即為點A的高度.
說明理由:
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,點A(﹣5,0),以OA為直徑在第二象限內作半圓C,點B是該半圓周上一動點,連接OB、AB,作點A關于點B的對稱點D,過點D作x軸垂線,分別交直線OB、x軸于點E、F,點F為垂足,當DF=4時,線段EF=_______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在四邊形ABCD中,∠BAD+∠BCD=180°, AC平分∠BAD,過點C作CE⊥AD,垂足為E, CD=4,AE=10,則四邊形ABCD的周長是____________________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某公司購買了一批A、B型芯片,其中A型芯片的單價比B型芯片的單價少9元,已知該公司用3120元購買A型芯片的條數與用4200元購買B型芯片的條數相等.
(1)求該公司購買的A、B型芯片的單價各是多少元?
(2)若兩種芯片共購買了200條,且購買的總費用為6280元,求購買了多少條A型芯片?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知Rt△OAB,∠OAB=90°,∠ABO=30°,斜邊OB=4,將Rt△OAB繞點O順時針旋轉60°,如題圖1,連接BC.
(1)填空:∠OBC= °;
(2)如圖1,連接AC,作OP⊥AC,垂足為P,求OP的長度;
(3)如圖2,點M,N同時從點O出發(fā),在△OCB邊上運動,M沿O→C→B路徑勻速運動,N沿O→B→C路徑勻速運動,當兩點相遇時運動停止,已知點M的運動速度為1.5單位/秒,點N的運動速度為1單位/秒,設運動時間為x秒,△OMN的面積為y,求當x為何值時y取得最大值?最大值為多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,AD⊥BC,BE⊥AC,垂足分別為點D、E,AD與BE交于點F,BF=AC, ∠ABE=22°,則∠CAD的度數是________°.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com