【題目】如圖,在平面直角坐標(biāo)系xOy中,菱形ABCD的頂點(diǎn)A的坐標(biāo)為(20),點(diǎn)B的坐標(biāo)為(0,1),對(duì)角線BDx軸平行,若直線ykx+5+2kk≠0)與菱形ABCD有交點(diǎn),則k的取值范圍是(  )

A.B.

C.D.2≤k≤2k≠0

【答案】B

【解析】

依據(jù)直線y=kx+5+2k即可得到直線y=kx+5+2kk≠0)經(jīng)過(guò)定點(diǎn)P-2,5),再根據(jù)直線PD的解析式為,直線PB的解析式為y=-2x+1,直線y=kx+5+2kk≠0)與菱形ABCD有交點(diǎn),即可得到k的取值范圍.

如圖,

在直線ykx+5+2kk≠0)中,令x=﹣2,則y5,

∴直線ykx+5+2kk≠0)經(jīng)過(guò)定點(diǎn)P(﹣2,5),

由菱形ABCD的頂點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)B的坐標(biāo)為(0,1),

可得C2,2),D4,1),

∴易得直線PD的解析式為,直線PB的解析式為y=﹣2x+1,

∵直線ykx+5+2kk≠0)與菱形ABCD有交點(diǎn),

k的取值范圍是,

故選B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在“綠滿重慶”行動(dòng)中,江北區(qū)種植了大量的小葉榕和銀杏樹,根據(jù)林業(yè)專家的分析,樹葉在進(jìn)行光合作用后產(chǎn)生的分泌物能在空氣中吸附懸浮顆粒,這樣就達(dá)到了滯塵凈化空氣的作用.

1)若某小區(qū)今年要種植銀杏樹和小葉榕共450株,且銀杏樹的數(shù)量不超過(guò)小葉榕數(shù)量的2倍,求今年該小區(qū)小葉榕至少種植多少株?

2)已知每一片銀杏樹葉一年平均滯塵量為,一株銀杏樹去年有3500片樹葉,冬季樹葉全部掉落后,今年新長(zhǎng)出了樹葉,且這株銀杏今年的滯塵量是去年滯塵量的11倍還多.已知每片小葉榕樹葉的滯塵量比銀杏樹葉多,一株小葉榕今年的樹葉總量比今年的這株銀杏要少,明年這株小葉榕樹葉將在今年的基礎(chǔ)上掉落,但又會(huì)新長(zhǎng)出1000片樹葉,若今明兩年這株小葉榕共滯塵量為,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,矩形ABCD中,AB=6,第1次平移將矩形ABCD沿AB的方向向右平移5個(gè)單位,得到矩形A1B1C1D1,第2次平移將矩形A1B1C1D1沿A1B1的方向向右平移5個(gè)單位,得到矩形A2B2C2D2,第n次平移將矩形An1Bn1Cn1Dn1沿An1Bn1的方向平移5個(gè)單位,得到矩形AnBnCnDnn2).

1)求AB1AB2的長(zhǎng).

2)若ABn的長(zhǎng)為56,求n

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,ABCD中,E,F分別是AB、CD上的點(diǎn),AECFM、N分別是DE、BF的中點(diǎn).

1)求證:四邊形ENFM是平行四邊形.

2)若∠ABC2A,求∠A的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC是直角三角形,∠ACB=90°,∠A=30°

(1)實(shí)踐與操作:利用尺規(guī)按下列要求作圖,并在圖中標(biāo)明相應(yīng)的字母(保留作圖痕跡,不寫作法).
①作△ABC的外接圓O;
②在AB的延長(zhǎng)線上作一點(diǎn)D,使得CD與⊙O相切;
(2)綜合與運(yùn)用:在你所作的圖中,若AC=6,則由線段CD,BD及 所圍成圖形的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在矩形ABCD中,動(dòng)點(diǎn)P從點(diǎn)B出發(fā),沿矩形的邊由運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的路程為x,的面積為y,把y看作x的函數(shù),函數(shù)的圖像如圖2所示,則的面積為( )

A. 10 B. 16 C. 18 D. 20

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】解下列方程組和一元一次不等式組:

1

2;

3

4-12

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中,AD的高,,垂足分別為E、F

圖中有哪些全等的三角形?請(qǐng)一一寫出,不需要說(shuō)明理由

說(shuō)明全等的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】任選一題作答,只計(jì)一題的成績(jī):

a.如圖,在的正方形網(wǎng)格中,點(diǎn),,,都在格點(diǎn)上.連接點(diǎn),得線段

1)畫出過(guò),,中的任意兩點(diǎn)的直線;

2)互相平行的直線(線段)有  ;(請(qǐng)用“”表示)

3)互相垂直的直線(線段)有   

(請(qǐng)用表示)

b.如圖,直線相交于,,的角平分線,,求的度數(shù).

其中一種解題過(guò)程如下,請(qǐng)?jiān)诶ㄌ?hào)中注明根據(jù),在橫線上補(bǔ)全步驟.

解:

  

   

的角平分線

      

   

   

   

      

查看答案和解析>>

同步練習(xí)冊(cè)答案