【題目】已知三條互相平行的直線a、b、c,請問能否作出一個等邊△ABC,使其三個頂點(diǎn)A、B、C分別在直線a、b、c上?(用“能”或“不能”填空).若能,請說明作圖方法;若不能,請簡要說明理由.
【答案】解:能, 如圖,過點(diǎn)A作AD⊥b于D,再作AD′=AD,且∠D′AD=60°,
再作D′C⊥AD′交直線c于點(diǎn)C,以AC為半徑,A點(diǎn)為圓心,
畫弧交直線b于點(diǎn)B,△ABC即為所求.
【解析】直接作AD′=AD,且∠D′AD=60°,進(jìn)而作D′C⊥AD′交直線c于點(diǎn)C,進(jìn)而得出答案.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解平行線的性質(zhì)(兩直線平行,同位角相等;兩直線平行,內(nèi)錯角相等;兩直線平行,同旁內(nèi)角互補(bǔ)),還要掌握等邊三角形的性質(zhì)(等邊三角形的三個角都相等并且每個角都是60°)的相關(guān)知識才是答題的關(guān)鍵.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】按下列程序計算,把答案填寫在表格內(nèi),然后觀察有什么規(guī)律,想一想:為什么會有這個規(guī)律?
(1)填寫表內(nèi)空格:
輸入 | -3 | -2 | -1 | 0 | … |
輸出答案 | 9 |
|
|
| … |
(2)發(fā)現(xiàn)的規(guī)律是:輸入數(shù)據(jù)x,則輸出的答案是__________;
(3)為什么會有這個規(guī)律?請你說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線L1∥L2 , 圓O與L1和L2分別相切于點(diǎn)A和點(diǎn)B,點(diǎn)M和點(diǎn)N分別是L1和L2上的動點(diǎn),MN沿L1和L2平移,圓O的半徑為1,∠1=60°,當(dāng)MN與圓相切時,AM的長度等于 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線L:y=-x+2與x軸、y軸分別交于A、B兩點(diǎn),在y軸上有一點(diǎn)C(0,4),動點(diǎn)M從A點(diǎn)以每秒1個單位的速度沿x軸向左移動.
(1)求A、B兩點(diǎn)的坐標(biāo);
(2)求△COM的面積S與M的移動時間t之間的函數(shù)關(guān)系式;
(3)當(dāng)t為何值時△COM≌△AOB,并求此時M點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售一種西裝和領(lǐng)帶,西裝每套定價200元,領(lǐng)帶每條定價40元.國慶節(jié)期間商場決定開展促銷活動,活動期間向客戶提供兩種優(yōu)惠方案:
方案一:買一套西裝送一條領(lǐng)帶;
方案二:西裝和領(lǐng)帶都按定價的90%付款.
現(xiàn)某客戶要到該商場購買西裝20套,領(lǐng)帶x.
(1)若該客戶按方案一購買,需付款多少元(用含x的式子表示)?若該客戶按方案二購買,需付款多少元(用含x的式子表示)?
(2)若,通過計算說明此時按哪種方案購買較為合算;
(3)當(dāng)時,你能給出一種更為省錢的購買方法嗎?試寫出你的購買方法和所需費(fèi)用.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BC邊上的垂直平分線DE與∠BAC的平分線交于點(diǎn)E,EF⊥AB交AB的延長線于點(diǎn)F,EG⊥AC于點(diǎn)G.
求證:(1)BF=CG;
(2)AB+AC=2AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E、F、G、H分別在菱形ABCD的四條邊上,且BE=BF=DG=DH,連接EF,F(xiàn)G,GH,HE得到四邊形EFGH.
(1)求證:四邊形EFGH是矩形;
(2)設(shè)AB=a,∠A=60°,當(dāng)BE為何值時,矩形EFGH的面積最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,點(diǎn)D、E、F分別在AB、BC、AC邊上,且BE=CF,BD=CE.
(1)求證:△DEF是等腰三角形;
(2)當(dāng)∠A=40°時,求∠DEF的度數(shù);
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程(x﹣3)(x﹣2)=m2
(1)求證:對于任意實(shí)數(shù)m,方程總有兩個不相等的實(shí)數(shù)根;
(2)若方程的一個根是1,求m的值及方程的另一個根.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com