【題目】如圖,在△ABC中,AB=AC,BD,CE分別是∠ABC,∠ACB的平分線,且DE∥BC,∠A=36°,則圖中等腰三角形共有_____個.
【答案】12
【解析】
由已知條件,根據(jù)三角形內角和等于180、角的平分線的性質求得各個角的度數(shù),然后利用等腰三角形的判定進行找尋,注意做到由易到難,不重不漏.
解:∵AB=AC,∠A=36°,
∴△ABC是等腰三角形,∠ABC=∠ACB==72°,
∵BD平分∠ABC,
∴∠EBD=∠DBC=36°,
∵ED∥BC,
∴∠AED=∠ADE=72°,∠EDB=∠DBC=36°,
∴在△ADE中,∠AED=∠ADE=72°,AD=AE,△ADE為等腰三角形,
在△ABD中,∠A=∠ABD=36°,AD=BD,△ABD是等腰三角形,
同理△AEC也是等腰三角形,
在△BED中,∠EBD=∠EDB=36°,ED=BE,△BED是等腰三角形,
同理△CED也是等腰三角形,
在△BDC中,∠BCD=∠BDC=72°,BD=BC,△BDC是等腰三角形,
同理△BEC也是等腰三角形,
∵∠OBC=∠OCB=∠ODE=∠OED=36°,
∴OD=OE,OB=OC,即△ODE,△OBC也為等腰三角形,
∵∠BEO=∠BOE=∠COD=∠ODC=72°,
∴CD=CO,BE=OB,
∴△CDO,△BOE也是等腰三角形,
所以共有12個等腰三角形.
故答案為:12.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,∠A=36°,AB=AC,AB的垂直平分線OD交AB于點O,交AC于點D,連接BD.下列結論錯誤的是( )
A. ∠C=2∠A B. BD平分∠ABC C. S△BCD=S△BOD D. 點D為線段AC的黃金分割點
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀下列材料:
小明遇到一個問題:在中,,,三邊的長分別為、、,求的面積.
小明是這樣解決問題的:如圖①所示,先畫一個正方形網(wǎng)格(每個小正方形的邊長為),再在網(wǎng)格中畫出格點(即三個頂點都在小正方形的頂點處),從而借助網(wǎng)格就能計算出的面積.他把這種解決問題的方法稱為構圖法.
參考小明解決問題的方法,完成下列問題:
()圖是一個的正方形網(wǎng)格(每個小正方形的邊長為) .
①利用構圖法在答卷的圖中畫出三邊長分別為、、的格點.
②計算①中的面積為__________.(直接寫出答案)
()如圖,已知,以,為邊向外作正方形,,連接.
①判斷與面積之間的關系,并說明理由.
②若,,,直接寫出六邊形的面積為__________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)軸上點表示的數(shù)為,點表示的數(shù)為,點表示的數(shù)為,為原點,且滿足.
(1)__________,__________,__________;
(2)若的的中點為.則點表示的數(shù)為__________;
(3)小亮說“如果將點向右移動5個單位長度,得到點,此時點在原點的右側,也在點的右側”,他的說法正確嗎?說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,,分別以AB、AC為邊作等邊三角形ABD與等邊三角形ACE,連接BE、CD,BE的延長線與CD交于點F,連接AF,有以下四個結論:①;②FA平分;③;④.其中一定正確的結論有( )
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的圖象經(jīng)過點(﹣1,2),且與X軸交點的橫坐標分別為x1,x2,其中﹣2<x1<﹣1,0<x2<1,下列結論:
①4a﹣2b+c<0;②2a﹣b<0;③a+c<1;④b2+8a>4ac,
其中正確的有( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知四邊形ABCD中,AD∥BC,∠D=90°,AC平分∠BAD,∠ACD=30°
(1)如圖1,求證:△ABC是等邊三角形;
(2)如圖2,點E在邊BA的延長線上,在邊BC上取一點F,連接EC、EF且EC=EF,求證:BF=AE;
(3)如圖3,在(2)的條件下,連接AF,取AF的中點G,連接BG并延長交線段EC于M,交線段AD于R,過點A做AN∥EC交線段BR于N,若GN=2,EM=5,求CM的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC是等邊三角形,AB=6,P是AC邊上一動點,由A向C運動(與A、C不重合),Q是CB延長線上一動點,與點P同時以相同的速度由B向CB延長線方向運動(Q不與B重合),過P作PE⊥AB于E,連接PQ交AB于D.
(1)證明:在運動過程中,點D是線段PQ的中點;
(2)當∠BQD=30°時,求AP的長;
(3)在運動過程中線段ED的長是否發(fā)生變化?如果不變,求出線段ED的長;如果變化請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:在平面直角坐標系中,對于任意兩點A (a,b),B(c,d),若點T(x,y)滿足x=,y=,那么稱點T是點A和B的融合點.例如:M(﹣1,8),N(4,﹣2),則點T(1,2)是點M和N的融合點.如圖,已知點D(3,0),點E是直線y=x+2上任意一點,點T (x,y)是點D和E的融合點.
(1)若點E的縱坐標是6,則點T的坐標為 ;
(2)求點T (x,y)的縱坐標y與橫坐標x的函數(shù)關系式:
(3)若直線ET交x軸于點H,當△DTH為直角三角形時,求點E的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com