【題目】如圖,用同樣規(guī)格黑白兩色的正方形瓷磚鋪設(shè)長(zhǎng)方形地面,請(qǐng)觀察下列圖形,并解答有關(guān)問題:
(1)在第n個(gè)圖中,第一橫行共 塊瓷磚,第一豎列共有 塊瓷磚;(均用含n的代數(shù)式表示)鋪設(shè)地面所用瓷磚的總塊數(shù)為 (用含n的代數(shù)式表示,n表示第n個(gè)圖形)
(2)上述鋪設(shè)方案,鋪一塊這樣的長(zhǎng)方形地面共用了506塊瓷磚,求此時(shí)n的值;
(3)黑瓷磚每塊4元,白瓷磚每塊3元,在問題(2)中,共需要花多少錢購買瓷磚?
(4)是否存在黑瓷磚與白瓷磚塊數(shù)相等的情形?請(qǐng)通過計(jì)算加以說明.
【答案】(1)(n+3),(n+2),(n+2)(n+3);(2)n=20;(3)共花1604元錢購買瓷磚;(4)不存在黑瓷磚與白瓷磚塊數(shù)相等的情形.
【解析】試題分析:(1)第一個(gè)圖形用的正方形的個(gè)數(shù)=3×4=12,第二個(gè)圖形用的正方形的個(gè)數(shù)=4×5=20,第三個(gè)圖形用的正方形的個(gè)數(shù)=5×6=30…以此類推,根據(jù)發(fā)現(xiàn)的規(guī)律可得在第n個(gè)圖中,第一橫行共(n+3) 塊瓷磚,第一豎列共有(n+2) 塊瓷磚,鋪設(shè)地面所用瓷磚的總塊數(shù)為(n+2)(n+3)個(gè);
(2)根據(jù)(1)中的結(jié)果可得(n+2)(n+3)=506,解方程即可得;
(3)根據(jù)(2)得出的結(jié)果,求出白瓷磚和黑瓷磚各有多少塊,分別乘上它們的單價(jià)再相加即可;
(4)先假設(shè)黑瓷磚與白瓷磚塊數(shù)相等的情形,根據(jù)黑、白瓷磚數(shù)量相等,看是否得到n的整數(shù)解即可.
試題解析:(1)第一個(gè)圖形用的正方形的個(gè)數(shù)=3×4=12,第二個(gè)圖形用的正方形的個(gè)數(shù)=4×5=20,第三個(gè)圖形用的正方形的個(gè)數(shù)=5×6=30…以此類推,在第n個(gè)圖中,第一橫行共(n+3) 塊瓷磚,第一豎列共有(n+2) 塊瓷磚,鋪設(shè)地面所用瓷磚的總塊數(shù)為(n+2)(n+3)個(gè),
故答案為:(n+3),(n+2),(n+2)(n+3);
(2)根據(jù)題意得:(n+2)(n+3)=506,
解得n1=20,n2=﹣25(不符合題意,舍去);
(3)觀察圖形可知,每﹣橫行有白磚(n+1)塊,每﹣豎列有白磚n塊,因而白磚總數(shù)是n(n+1)塊,n=20時(shí),白磚為20×21=420(塊),黑磚數(shù)為506﹣420=86(塊),
故總錢數(shù)為420×3+86×4=1260+344=1604(元),
答:共花1604元錢購買瓷磚;
(4)根據(jù)題意得:n(n+1)=2(2n+3),
解得n=(不符合題意,舍去),
∴不存在黑瓷磚與白瓷磚塊數(shù)相等的情形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)分別交y軸、x 軸于A、B兩點(diǎn),拋物線過A、B兩點(diǎn).
(1)求這個(gè)拋物線的解析式;
(2)作垂直x軸的直線x=t,在第一象限交直線AB于點(diǎn)M,交這個(gè)拋物線于點(diǎn)N.求當(dāng)t 取何值時(shí),MN有最大值?最大值是多少?
(3)在(2)的情況下,以A、M、N、D為頂點(diǎn)作平行四邊形,求第四個(gè)頂點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)的圖象與y軸正半軸相交,其頂點(diǎn)坐標(biāo)為(,1),下列結(jié)論:①abc>0;②a=b;③a=4c﹣4;④方程有兩個(gè)相等的實(shí)數(shù)根,其中正確的結(jié)論是______.(只填序號(hào)即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,A(0,5),直線x=-5與x軸交于點(diǎn)D,直線y=-x-與x軸及直線x=-5分別交于點(diǎn)C,E.點(diǎn)B,E關(guān)于x軸對(duì)稱,連接AB.
(1)求點(diǎn)C,E的坐標(biāo)及直線AB的解析式;
(2)若S=S△CDE+S四邊形ABDO,求S的值;
(3)在求(2)中S時(shí),嘉琪有個(gè)想法:“將△CDE沿x軸翻折到△CDB的位置,而△CDB與四邊形ABDO拼接后可看成△AOC,這樣求S便轉(zhuǎn)化為直接求△AOC的面積,如此不更快捷嗎?”但大家經(jīng)反復(fù)驗(yàn)算,發(fā)現(xiàn)S△AOC≠S,請(qǐng)通過計(jì)算解釋他的想法錯(cuò)在哪里.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知矩形ABCD中,E是AD邊上的一個(gè)動(dòng)點(diǎn),點(diǎn)F,G,H分別是BC,BE,CE的中點(diǎn).
(1)求證:△BGF≌△FHC;
(2)設(shè)AD=a,當(dāng)四邊形EGFH是正方形時(shí),求矩形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2﹣2(m+1)x+m2=0
(1)當(dāng)m取何值時(shí),方程有兩個(gè)相等的實(shí)數(shù)根;
(2)為m選取一個(gè)合適的整數(shù),使方程有兩個(gè)不相等的實(shí)數(shù)根,并求出這兩個(gè)根.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知線段MN=3cm,在線段MN上取一點(diǎn)P,使PM=PN;延長(zhǎng)線段MN到點(diǎn)A,使AN=MN;延長(zhǎng)線段NM到點(diǎn)B,使BN=3BM.
(1)根據(jù)題意,畫出圖形;
(2)求線段AB的長(zhǎng);
(3)試說明點(diǎn)P是哪些線段的中點(diǎn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在不透明的袋子中有四張標(biāo)著數(shù)字1,2,3,4的卡片,小明、小華兩人按照各自的規(guī)則玩抽卡片游戲.
小明畫出樹狀圖如圖所示:
小華列出表格如下:
回答下列問題:
(1)根據(jù)小明畫出的樹形圖分析,他的游戲規(guī)則是,隨機(jī)抽出一張卡片后 (填“放回”或“不放回”),再隨機(jī)抽出一張卡片;
(2)根據(jù)小華的游戲規(guī)則,表格中①表示的有序數(shù)對(duì)為 ;
(3)規(guī)定兩次抽到的數(shù)字之和為奇數(shù)的獲勝,你認(rèn)為誰獲勝的可能性大?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,甲和乙同時(shí)從學(xué)校放學(xué),兩人以各自送度勻速步行回家,甲的家在學(xué)校的正西方向,乙的家在學(xué)校的正東方向,乙家離學(xué)校的距離比甲家離學(xué)校的距離遠(yuǎn)3900米,甲準(zhǔn)備一回家就開始做什業(yè),打開書包時(shí)發(fā)現(xiàn)錯(cuò)拿了乙的練習(xí)冊(cè).于是立即步去追乙,終于在途中追上了乙并交還了練習(xí)冊(cè),然后再以先前的速度步行回家,(甲在家中耽擱和交還作業(yè)的時(shí)間忽略不計(jì))結(jié)果甲比乙晚回到家中,如圖是兩人之間的距離y米與他們從學(xué)校出發(fā)的時(shí)間x分鐘的函數(shù)關(guān)系圖,則甲的家和乙的家相距_____米.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com