【題目】如圖,在平面直角坐標(biāo)系xOy中,A(0,5),直線x=-5x軸交于點(diǎn)D,直線y=-xx軸及直線x=-5分別交于點(diǎn)C,E.點(diǎn)BE關(guān)于x軸對(duì)稱,連接AB.

(1)求點(diǎn)C,E的坐標(biāo)及直線AB的解析式;

(2)SSCDES四邊形ABDO,求S的值;

(3)在求(2)S時(shí),嘉琪有個(gè)想法:CDE沿x軸翻折到CDB的位置,而CDB與四邊形ABDO拼接后可看成AOC,這樣求S便轉(zhuǎn)化為直接求AOC的面積,如此不更快捷嗎?但大家經(jīng)反復(fù)驗(yàn)算,發(fā)現(xiàn)SAOCS,請(qǐng)通過(guò)計(jì)算解釋他的想法錯(cuò)在哪里.

【答案】(1)C(-13,0),E(-5,-3),;(2)32;(3)見解析.

【解析】

(1)利用坐標(biāo)軸上點(diǎn)的特點(diǎn)確定出點(diǎn)C的坐標(biāo),再利用直線的交點(diǎn)坐標(biāo)的確定方法求出點(diǎn)E坐標(biāo),進(jìn)而得到點(diǎn)B坐標(biāo),最后用待定系數(shù)法求出直線AB解析式;

(2)直接利用直角三角形的面積計(jì)算方法和直角梯形的面積的計(jì)算即可得出結(jié)論,

(3)先求出直線ABx軸的交點(diǎn)坐標(biāo),判斷出點(diǎn)C不在直線AB上,即可.

(1)在直線中,令y=0,則有0=,

x=﹣13,

C(﹣13,0),

x=﹣5,代入,解得y=﹣3,

E(﹣5,﹣3),

∵點(diǎn)B,E關(guān)于x軸對(duì)稱,

B(﹣5,3),

A(0,5),

∴設(shè)直線AB的解析式為y=kx+5,

﹣5k+5=3,

k=,

∴直線AB的解析式為

(2)由(1)知E(﹣5,﹣3),

DE=3,

C(﹣13,0),

CD=﹣5﹣(﹣13)=8,

SCDE=CD×DE=12,

由題意知,OA=5,OD=5,BD=3,

S四邊形ABDO=(BD+OA)×OD=20,

S=SCDE+S四邊形ABDO=12+20=32;

(3)由(2)知,S=32,

AOC中,OA=5,OC=13,

SAOC=OA×OC==32.5,

S≠SAOC,

理由:由(1)知,直線AB的解析式為,令y=0,則0=,

x=﹣≠﹣13,

∴點(diǎn)C不在直線AB上,

即:點(diǎn)A,B,C不在同一條直線上,

SAOC≠S.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)E在正方形ABCD的邊AB上,連接DE,過(guò)點(diǎn)CCFDEF,過(guò)點(diǎn)AAGCFDE于點(diǎn)G

1)求證:DCF≌△ADG

2)若點(diǎn)EAB的中點(diǎn),設(shè)DCF=α,求sinα的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖①,如果 A1、A2A3、A4 把圓周四等分,則以A1、A2A3、A4為頂點(diǎn)的直角三角形4個(gè);如圖②,如果A1、A2、A3、A4A5、A6 把圓周六等分,則以A1、A2、A3、A4、A5A6 為點(diǎn)的直角三角形有 12 個(gè);如果 A1、A2、A3、……A2n 把圓周 2n 等分,則以 A1、A2A3、…A2n為頂點(diǎn)的直角三角形有__________個(gè),

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)開展了手機(jī)伴我健康行主題活動(dòng).他們隨機(jī)抽取部分學(xué)生進(jìn)行手機(jī)使用目的每周使用手機(jī)時(shí)間的問(wèn)卷調(diào)查,并繪制成如圖的統(tǒng)計(jì)圖。已知查資料人人數(shù)是40人。

請(qǐng)你根據(jù)以上信息解答以下問(wèn)題

1)在扇形統(tǒng)計(jì)圖中,玩游戲對(duì)應(yīng)的圓心角度數(shù)是_______________。

2)補(bǔ)全條形統(tǒng)計(jì)圖

3)該校共有學(xué)生1200人,估計(jì)每周使用手機(jī)時(shí)間在2小時(shí)以上(不含2小時(shí))的人數(shù)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】.某酒廠生產(chǎn)AB兩種品牌的酒,平均每天兩種酒共可售出600瓶,每種酒每瓶的成本和售價(jià)如表所示,設(shè)平均每天共獲利y元,平均每天售出A種品牌的酒x.

A

B

成本(元)

50

35

售價(jià)(元)

70

50

1)請(qǐng)寫出y關(guān)于x的函數(shù)關(guān)系式;

2)如果該廠每天至少投入成本25000元,且售出的B種品牌的酒不少于全天銷售總量的55%,那么共有幾種銷售方案?并求出每天至少獲利多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】近幾年購(gòu)物的支付方式日益增多,某數(shù)學(xué)興趣小組就此進(jìn)行了抽樣調(diào)查.調(diào)查結(jié)果顯示,支付方式有:A微信、B支付寶、C現(xiàn)金、D其他,該小組對(duì)某超市一天內(nèi)購(gòu)買者的支付方式進(jìn)行調(diào)查統(tǒng)計(jì),得到如下兩幅不完整的統(tǒng)計(jì)圖.

請(qǐng)你根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問(wèn)題:

(1)本次一共調(diào)查了多少名購(gòu)買者?

(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;在扇形統(tǒng)計(jì)圖中A種支付方式所對(duì)應(yīng)的圓心角為   度.

(3)若該超市這一周內(nèi)有1600名購(gòu)買者,請(qǐng)你估計(jì)使用AB兩種支付方式的購(gòu)買者共有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,用同樣規(guī)格黑白兩色的正方形瓷磚鋪設(shè)長(zhǎng)方形地面,請(qǐng)觀察下列圖形,并解答有關(guān)問(wèn)題:

(1)在第n個(gè)圖中,第一橫行共    塊瓷磚,第一豎列共有    塊瓷磚;(均用含n的代數(shù)式表示)鋪設(shè)地面所用瓷磚的總塊數(shù)為   (用含n的代數(shù)式表示,n表示第n個(gè)圖形)

(2)上述鋪設(shè)方案,鋪一塊這樣的長(zhǎng)方形地面共用了506塊瓷磚,求此時(shí)n的值;

(3)黑瓷磚每塊4元,白瓷磚每塊3元,在問(wèn)題(2)中,共需要花多少錢購(gòu)買瓷磚?

(4)是否存在黑瓷磚與白瓷磚塊數(shù)相等的情形?請(qǐng)通過(guò)計(jì)算加以說(shuō)明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,等腰直角三角形OA1A2的直角邊OA1y軸的正半軸上,且OA1=A1A2=1,以OA2為直角邊作第二個(gè)等腰直角三角形OA2A3,以OA3為直角邊作第三個(gè)等腰直角三角形OA3A4,,依此規(guī)律,得到等腰直角三角形OA2017A2018,則點(diǎn)A2017的坐標(biāo)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)P是菱形ABCD的對(duì)角線AC上的一個(gè)動(dòng)點(diǎn),已知AB=1,∠ADC=120°, 點(diǎn)M,N分別是AB,BC邊上的中點(diǎn),則MPN的周長(zhǎng)最小值是______.

查看答案和解析>>

同步練習(xí)冊(cè)答案