【題目】對于一元二次方程,下列說法:
①若,方程有兩個不等的實數根;
②若方程有兩個不等的實數根,則方程也一定有兩個不等的實數根;
③若是方程的一個根,則一定有成立;
④若是方程的一個根,則一定有成立,其中正確的只有( )
A. ①②④ B. ②③ C. ③④ D. ①④
【答案】D
【解析】
由a+c=0,a≠0,可知a、c異號,即可得△=b2-4ac>0,所以方程有兩個不等的實數根,①正確;當c=0時不成立,②不正確;若c是方程ax2+bx+c=0的一個根,當c=0時,ac+b+1=0不一定成立,③不正確;若m是方程ax2+bx+c=0的一個根,所以有am2+bm+c=0,即am2= -(bm+c),而(2am+b)2=4a2m2+4abm+b2=4a[-(bm+c)]+4abm+b2=4abm-4abm-4ac+b2=b2-4ac,④正確.
①因為a+c=0,a≠0,所以①a、c異號,所以△=b2-4ac>0,所以方程有兩個不等的實數根;
②當c=0時不成立;
③若c是方程ax2+bx+c=0的一個根,當c=0時,ac+b+1=0不一定成立;
④若m是方程ax2+bx+c=0的一個根,所以有am2+bm+c=0,即am2= -(bm+c),而(2am+b)2=4a2m2+4abm+b2=4a[-(bm+c)]+4abm+b2=4abm-4abm-4ac+b2=b2-4ac.
所以①④成立.
故選D.
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系內,已知點、點,動點從點開始在線段上以每秒個單位長度的速度向點移動,同時動點從點開始在線段上以每秒個單位長度的速度向點移動,設點、移動的時間為秒.
求點的坐標;
當為何值時,的面積為個平方單位?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點B在線段AC上,點E在線段BD上,∠ABD=∠DBC,AB=DB,EB=CB,M,N分別是AE,CD的中點。試探索BM和BN的關系,并證明你的結論。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知點P到BE,BD,AC的距離恰好相等,則點P的位置:①在∠B的平分線上;②在∠DAC的平分線上;③在∠ECA的平分線上;④恰是∠B,∠DAC,∠ECA三條角平分線的交點,上述結論中,正確結論的個數有( 。
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AD⊥BC于點D,BE交AD于點F,交AC于點E,若BE平分∠ABC,試判斷△AEF的形狀,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在等邊三角形ABC中,點P在△ABC內,點Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.
(1)求證:△ABP≌△ACQ;
(2)請判斷△APQ是什么三角形,試說明你的結論.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,AB=DB,∠1=∠2,請你添加一個適當的條件,使△ABC≌△DBE,請問添加下面哪個條件:①BC=BE;②AC=DE;③∠A=∠D;④∠ACB=∠DEB;不能判斷△ABC≌△DBE的有______.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,∠ACB=90°,AC =3,BC =4,AB=5,BD平分∠ABC,如果M、N分別為BD、BC上的動點,那么CM+MN的最小值是____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=6cm,BC=8cm,D、E、F分別是AC、BC、AB的中點,連接DE.點P從點D出發(fā),沿DE方向勻速運動;同時,點Q從點E出發(fā),沿EB方向勻速運動,兩者速度均為1cm/s;當其中一點停止運動時,另外一點也停止運動.連接PQ、PF,設運動時間為ts(0<t<4).解答下列問題:
(1)當t為何值時,△EPQ為等腰三角形?
(2)如圖①,設四邊形PFBQ的面積為ycm2,求y與t之間的函數關系式;
(3)當t為何值時,四邊形PFBQ的面積與△ABC的面積之比為2:5?
(4)如圖②,連接FQ,是否存在某一時刻,使得PF與QF互相垂直?若存在,求出此時t的值;若不存,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com