【題目】矩形ABCD中,對角線ACBD相交于O,∠AOB=60°,AC=10.

1)求矩形較短邊的長;

2)矩形較長邊的長;

3)矩形的面積.

【答案】1)矩形較短邊的長為5;(2)矩形較長邊的長是5;(325

【解析】

1)根據(jù)矩形的性質,可以得到△AOB是等邊三角形,則可以求得OA的長,進而求得AB的長.
2)在直角△ABC中,根據(jù)勾股定理來求BC的長度;
3)由矩形的面積公式進行解答.

解:(1)∵四邊形ABCD是矩形,
OA=OB
又∵∠AOB=60°
∴△AOB是等邊三角形.
AB=OA=AC=5,即矩形較短邊的長為5
2)在直角△ABC中,∠ABC=90°,AB=5,AC=10,則BC=5,即矩形較長邊的長是5;
3)矩形的面積=ABBC=5×5=25

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABC中,∠C=90°,AC=BC=,將ABC繞點A順時針方向旋轉60°到△AB′C′的位置,連接CB,則CB的長為(  )

A. B. C. D. 1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形E是邊CD上一點,BC=EC,CF⊥BEAB于點F,PEB延長線上一點下列結論:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC,其中正確結論的個數(shù)為( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,四邊形ABCD的邊ADx軸上,點Cy軸的負半軸上,直線BCAD,且BC3,OD2,將經(jīng)過A、B兩點的直線ly=﹣2x10向右平移,平移后的直線與x軸交于點E,與直線BC交于點F,設AE的長為tt0).

1)四邊形ABCD的面積為   ;(提示:小學已學過梯形面積計算方法)

2)設四邊形ABCD被直線l掃過的面積(陰影部分)為S,請寫出S關于t的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】隨著幾何部分的學習,小鵬對幾何產(chǎn)生了濃厚的興趣,他最喜歡利用手中的工具畫圖了如圖,作一個,以O為圓心任意長為半徑畫弧分別交OA,OB于點C和點D,將一副三角板如圖所示擺放,兩個直角三角板的直角頂點分別落在點C和點D,直角邊中分別有一邊與角的兩邊重合,另兩條直角邊相交于點P,連接小鵬通過觀察和推理,得出結論:OP平分

你同意小鵬的觀點嗎?如果你同意小鵬的觀點,試結合題意寫出已知和求證,并證明.

已知:中,____________,________________________

求證:OP平分

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知、分別是的三邊.(1)分別將多項式,進行因式分解.(2)若,試判斷的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】3分)以下四種沿AB折疊的方法中,不一定能判定紙帶兩條邊線a,b互相平行的是( )

A. 如圖1,展開后測得∠1=∠2

B. 如圖2,展開后測得∠1=∠2∠3=∠4

C. 如圖3,測得∠1=∠2

D. 如圖4,展開后再沿CD折疊,兩條折痕的交點為O,測得OA=OB,OC=OD

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點P(x0 , y0)和直線y=kx+b,則點P到直線y=kx+b的距離證明可用公式d= 計算.
例如:求點P(﹣1,2)到直線y=3x+7的距離.
解:因為直線y=3x+7,其中k=3,b=7.
所以點P(﹣1,2)到直線y=3x+7的距離為:d= = = =
根據(jù)以上材料,解答下列問題:
(1)求點P(1,﹣1)到直線y=x﹣1的距離;
(2)已知⊙Q的圓心Q坐標為(0,5),半徑r為2,判斷⊙Q與直線y= x+9的位置關系并說明理由;
(3)已知直線y=﹣2x+4與y=﹣2x﹣6平行,求這兩條直線之間的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,一張矩形紙片ABCD,其中AD=8cm,AB=6cm,先沿對角線BD對折,點C落在點C′的位置,BC′交AD于點G.

(1)求證:AG=C′G;
(2)如圖2,再折疊一次,使點D與點A重合,得折痕EN,EN交AD于點M,求EM的長.

查看答案和解析>>

同步練習冊答案