20.如圖,平行四邊形ABCD中,AB=6,AD=10,AE平分∠BAD,
(1)求AF:FC的值;
(2)三角形CEF的面積為1時,求平行四邊形的面積.

分析 (1)直接利用平行四邊形的性質(zhì)結(jié)合相似三角形的判定與性質(zhì)得出△ECF∽△DAF,即可得出答案;
(2)直接利用相似三角形的性質(zhì)結(jié)合三角形面積求法得出S△AFD:S△DFC=5:2,進而得出答案.

解答 解:(1)∵四邊形ABCD是平行四邊形,
∴AD∥BC,AD=BC=10,
∴∠DAE=∠AEB,
∵AE平分∠BAD,
∴∠BAE=∠EAD,
∴∠BAE=∠BEA,
∴AB=BE=6,
∴EC=4,
∵AD∥EC,
∴△ECF∽△DAF,
∴$\frac{AF}{FC}$=$\frac{AD}{EC}$=$\frac{10}{4}$=$\frac{5}{2}$,
即AF:FC的值為:5:2;

(2)∵△ECF∽△DAF,
∴$\frac{AF}{FC}$=$\frac{5}{2}$,
∴$\frac{{S}_{△AFD}}{{S}_{△CFE}}$=$\frac{25}{4}$,
∵三角形CEF的面積為1,
∴S△AFD=$\frac{25}{4}$,
∵AF:FC的值為:5:2,
∴S△AFD:S△DFC=5:2,
∴S△DFC=$\frac{5}{2}$,
∴S△ACD=$\frac{25}{4}$+$\frac{5}{2}$=$\frac{35}{4}$,
∴平行四邊形ABCD的面積為:$\frac{35}{2}$.

點評 此題主要考查了平行四邊形的性質(zhì)以及相似三角形的性質(zhì)和三角形的面積求法等知識,正確應(yīng)用相似三角形的判定與性質(zhì)是解題關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:填空題

12.當x≤-$\frac{5}{2}$時,代數(shù)式-2x+5的值不小于10.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

13.如圖,y=kx+b(k≠0)的圖象如圖所示,當y>0時,x的取值范圍是(  )
A.x>2B.x<2C.x>3D.2<x<3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

10.平行四邊形的一邊是10cm,那么這個平行四邊形的兩條對角線的長不可能是(  )
A.14cm和6cmB.16cm和8cmC.18cm和10cmD.10cm和12cm

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

17.某商品公司為指導某種應(yīng)季商品的生產(chǎn)和銷售,在對歷年市場行情和生產(chǎn)情況進行調(diào)查基礎(chǔ)上,對今年這種商品的市場售價和生產(chǎn)成本進行了預測并提供了兩個方面的信息:如圖(1)(2).

注:兩圖中的每個實心黑點所對應(yīng)的縱坐標分別指相應(yīng)月份一件商品的售價和成本,生產(chǎn)成本6月份最高;圖(1)的圖象是線段,圖(2)的圖象是拋物線.
(1)在3月份出售這種商品,一件商品的利潤是多少?
(2)設(shè)t月份出售這種商品,一件商品的成本Q(元),求Q關(guān)于t的函數(shù)解析式.
(3)設(shè)t月份出售這種商品,一件商品的利潤W(元),求W關(guān)于t的函數(shù)解析式.
(4)問哪個月出售這種商品,一件商品的利潤最大?簡單說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

5.“已知:正比例函數(shù)y1=kx(k>0)與反比例函數(shù)y2=$\frac{m}{x}$(m>0)圖象相交于A、B兩點,其橫坐標分別是1和-1,求不等式kx>$\frac{m}{x}$的解集.”對于這道題,某同學是這樣解答的:“由圖象可知:當x>1或-1<x<0時,y1>y2,所以不等式kx>$\frac{m}{x}$的解集是x>1或-1<x<0”.他這種解決問題的思路體現(xiàn)的數(shù)學思想方法是( 。
A.數(shù)形結(jié)合B.轉(zhuǎn)化C.類比D.分類討論

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

12.如圖,在?ABCD中,AB=5,AD=6,將?ABCD沿AE翻折后,點B恰好與點C重合,則折痕AE的長為( 。
A.3B.$\sqrt{12}$C.$\sqrt{15}$D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

8.若-$\frac{1}{3}$axb與2ab1-y的和是一個單項式,則x-y2016的值為( 。
A.1B.-3C.-1D.0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

9.在我市十個全覆蓋工作的推動下,某鄉(xiāng)鎮(zhèn)準備在相距3千米的A、B兩個工廠間修一條筆直的公路,在工廠A北偏東60°方向、工廠北偏西45°方向有一點P,以P點為圓心,1.2千米為半徑的區(qū)域是一個村莊,問修筑公路時,這個村莊是否有居民需要搬遷?(參考數(shù)據(jù):$\sqrt{2}≈1.4$,$\sqrt{3}≈1.7$)

查看答案和解析>>

同步練習冊答案